Full Text:   <1277>

Summary:  <471>

CLC number: X13

On-line Access: 2014-08-04

Received: 2014-04-29

Revision Accepted: 2014-06-26

Crosschecked: 2014-07-18

Cited: 4

Clicked: 2840

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.8 P.606-617

http://doi.org/10.1631/jzus.A1400112


Organic contaminants and carbon nanoparticles: sorption mechanisms and impact parameters


Author(s):  Hong-bo Peng, Di Zhang, Hao Li, Chi Wang, Bo Pan

Affiliation(s):  Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China

Corresponding email(s):   zhangdi2002113@sina.com

Key Words:  Organic contaminants, Environmental behaviors, Carbon nanoparticles (CNPs), Interaction mechanisms


Hong-bo Peng, Di Zhang, Hao Li, Chi Wang, Bo Pan. Organic contaminants and carbon nanoparticles: sorption mechanisms and impact parameters[J]. Journal of Zhejiang University Science A, 2014, 15(8): 606-617.

@article{title="Organic contaminants and carbon nanoparticles: sorption mechanisms and impact parameters",
author="Hong-bo Peng, Di Zhang, Hao Li, Chi Wang, Bo Pan",
journal="Journal of Zhejiang University Science A",
volume="15",
number="8",
pages="606-617",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1400112"
}

%0 Journal Article
%T Organic contaminants and carbon nanoparticles: sorption mechanisms and impact parameters
%A Hong-bo Peng
%A Di Zhang
%A Hao Li
%A Chi Wang
%A Bo Pan
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 8
%P 606-617
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400112

TY - JOUR
T1 - Organic contaminants and carbon nanoparticles: sorption mechanisms and impact parameters
A1 - Hong-bo Peng
A1 - Di Zhang
A1 - Hao Li
A1 - Chi Wang
A1 - Bo Pan
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 8
SP - 606
EP - 617
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400112


Abstract: 
carbon nanoparticles (CNPs) are novel manufactured materials with unique properties and have potential for a variety of applications. Adsorption of organic contaminants by discharged CNPs may affect the fate and transport of organic contaminants in the environment. This review summarizes the present research progress regarding organic contaminant adsorption on CNPs, and provides important information for the evaluation of the environmental behavior of organic contaminants and the risks associated with the use of CNPs. The main adsorption mechanisms involve hydrophobic interactions, π-π interactions, hydrogen bonds, and electrostatic interactions. These interactions may exist simultaneously, while the controlling adsorption mechanism differs depending on the properties of both the organic contaminants and the CNPs along with environmental conditions. The status of CNPs in the environment greatly affects or even controls their characteristics for adsorption of organic contaminants. The mobility and transport of dispersed CNPs and CNP-adsorbed organic contaminants could be promoted in natural aqueous environments, potentially increasing the spread of various organic contaminants and their associated environmental risks. Investigating the adsorption mechanisms and impact parameters is vital in predicting the environmental behaviors of both organic contaminants and CNPs and their associated risks.

有机污染物和碳纳米颗粒:吸附机理及影响因素

研究目的:碳纳米颗粒由于其独特的优良性能被广泛应用,从而不可避免地进入环境。进入环境的碳纳米颗粒与有机污染物有很强的相互作用,并且碳纳米颗粒对有机污染物的吸附可能会影响污染物的环境风险和迁移。因此,本研究总结了目前有机污染物在碳纳米颗粒上吸附的研究进展,为有机污染物及碳纳米颗粒的环境行为研究及风险评价提供重要信息。
重要结论:有机污染物和碳纳米颗粒的主要相互作用有憎水性、静电、氢键和π-π作用,这些作用及它们的强度受碳纳米颗粒的表面性质、形态及有机污染物的分子大小、结构和官能团等影响。不同的吸附机理可能同时控制有机物在碳纳米颗粒上的吸附过程,而且在不同的环境条件下吸附控制机理不同。区分吸附控制机理和影响因素的研究对预测有机污染物和碳纳米颗粒的环境行为和风险非常重要。
有机污染物;环境行为;碳纳米颗粒;相互作用机理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Arnaldi, S., 2013. Exploring imaginative geographies of nanotechnologies in news media images of Italian nanoscientists. Technology in Society, 37:49-58.

[2]Baughman, R.H., Zakhidov, A.A., De Heer, W.A., 2002. Carbon nanotubes—the route toward applications. Science, 297(5582):787-792.

[3]Biesaga, M., Pyrzynska, K., 2006. The evaluation of carbon nanotubes as a sorbent for dicamba herbicide. Journal of Separation Science, 29(14):2241-2244.

[4]Bouchard, D.C., 1998. Organic cosolvent effects on the sorption and transport of neutral organic chemicals. Chemosphere, 36(8):1883-1892.

[5]Chen, G.C., Shan, X.Q., Wang, Y.S., et al., 2008. Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes. Environmental Science & Technology, 42(22):8297-8302.

[6]Chen, G.C., Shan, X.Q., Wang, Y.S., et al., 2009. Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II). Water Research, 43(9):2409-2418.

[7]Chen, G.C., Shan, X.Q., Pei, Z.G., et al., 2011. Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead. Journal of Hazardous Materials, 188(1-3):156-163.

[8]Chen, J.Y., Chen, W., Zhu, D., 2008. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry. Environmental Science & Technology, 42(19):7225-7230.

[9]Chen, W., Duan, L., Zhu, D., 2007. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology, 41(24):8295-8300.

[10]Chen, W., Duan, L., Wang, L.L., et al., 2008. Adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes. Environmental Science & Technology, 42(18):6862-6868.

[11]Cheng, X.K., Kan, A.T., Tomson, M.B., 2004. Naphthalene adsorption and desorption from aqueous C60 fullerene. Journal of Chemical & Engineering Data, 49(3):675-683.

[12]Cheng, X.K., Kan, A., Tomson, M., 2005. Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60. Journal of Nanoparticle Research, 7(4-5):555-567.

[13]Cho, H.H., Smith, B.A., Wnuk, J.D., et al., 2008. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environmental Science & Technology, 42(8):2899-2905.

[14]Chorover, J., Amistadi, M.K., Burgos, W.D., et al., 1999. Quinoline sorption on kaolinite-humic acid complexes. Soil Science Society of American Journal, 63(4):850-857.

[15]Clark II, C.J., Rao, P.S.C., Annable, M.D., 2003. Degradation of perchloroethylene in cosolvent solutions by zero- valent iron. Journal of Hazardous Materials, 96(1):65-78.

[16]Delgado, R., Carlo, G., 2013. Nanotechnology in Mexico: global trends and national implications for policy and regulatory issues. Technology in Society, 37:4-15.

[17]Fagan, S.B., Souza Filho, A.G., Lima, J.O.G., et al., 2004. 1,2-dichlorobenzene interacting with carbon nanotubes. Nano Letters, 4(7):1285-1288.

[18]Frimmel, F.H., Niessner, R., Baumann, T., 2010. Nanoparticles in Groundwater—Occurrence and Applications. Nanoparticles in the Water Cycle, Springer Berlin Heidelberg, p.23-34.

[19]Gotovac, S., Hattori, Y., Noguchi, D., et al., 2006. Phenanthrene adsorption from solution on single wall carbon nanotubes. The Journal of Physical Chemistry B, 110(33):16219-16224.

[20]Gotovac, S., Honda, H., Hattori, Y., et al., 2007a. Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Letters, 7(3):583-587.

[21]Gotovac, S., Song, L., Kanoh, H., et al., 2007b. Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300(1-2):117-121.

[22]Gotovac, S., Yang, C.M., Hattori, Y., et al., 2007c. Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. Journal of Colloid and Interface Science, 314(1):18-24.

[23]Gwinn, M.R., Vallyathan, V., Nriagu, J.O., 2011. Nanotechnology: Human Safety Issues, Research Gaps and Potential Beneficial Opportunities. Encyclopedia of Environmental Health. Elsevier, Burlington, p.24-32.

[24]Handy, R., Owen, R., Valsami-Jones, E., 2008. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, 17(5):315-325.

[25]Hu, J., Shao, D.D., Chen, C.L., et al., 2010. Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/ iron oxides for adsorbent application. The Journal of Physical Chemistry B, 114(20):6779-6785.

[26]Hu, X.L., Liu, J.L., Mayer, P., et al., 2008. Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene. Environmental Toxicology and Chemistry 27(9):1868-1874.

[27]Hyung, H., Fortner, J.D., Hughes, J.B., et al., 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environmental Science & Technology, 41(1):179-184.

[28]Iijima, S., Ichihashi, T., 1993. Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430):603-605.

[29]Ji, L.L., Chen, W., Zheng, S.R., et al., 2009. Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir, 25(19):11608-11613.

[30]Ji, L.L., Chen, W., Bi, J., et al., 2010. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environmental Toxicology and Chemistry, 29(12):2713- 2719.

[31]Klaine, S.J., Alvarez, P.J.J., Batley, G.E., et al., 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9):1825-1851.

[32]Kulshrestha, P., Giese, R.F., Aga, D.S., 2004. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science & Technology, 38(15):4097- 4105.

[33]Lam, C.W., James, J.T., Mccluskey, R., et al., 2006. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Critical Reviews in Toxicology, 36(3):189-217.

[34]Li, X.N., Zhao, H.M., Quan, X., et al., 2011. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents. Journal of Hazardous Materials, 186(1):407-415.

[35]Liao, Q., Sun, J., Gao, L., 2008. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(2-3):160-165.

[36]Lin, D.H., Xing, B.S., 2008a. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology, 42(19):7254-7259.

[37]Lin, D.H., Xing, B.S., 2008b. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environmental Science & Technology, 42(16):5917-5923.

[38]Liu, C.H., Li, J.J., Zhang, H.L., et al., 2008. Structure dependent interaction between organic dyes and carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 313-314:9-12.

[39]Liu, X., Wang, X.C., Tan, F., et al., 2012. An electrochemically enhanced solid-phase microextraction approach based on molecularly imprinted polypyrrole/ multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples. Analytica Chimica Acta, 727:26-33.

[40]Lu, C., Chung, Y.L., Chang, K.F., 2005. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research, 39(6):1183-1189.

[41]MacKay, A.A., Vasudevan, D., 2012. Polyfunctional ionogenic compound sorption: challenges and new approaches to advance predictive models. Environmental Science & Technology, 46(17):9209-9223.

[42]Masciangioli, T., Zhang, W.X., 2003. Environmental technologies at the nanoscale. Environmental Science & Technology, 37(5):102A-108A.

[43]Pan, B., Xing, B.S., 2008. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 42(24):9005-9013.

[44]Pan, B., Lin, D.H., Mashayekhi, H., et al., 2008. Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environmental Science & Technology, 42(15):5480-5485.

[45]Pan, B., Zhang, D., Li, H., et al., 2013. Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid. Environmental Science & Technology, 47(14):7722-7728.

[46]Park, H.R., Kim, T.H., Bark, K.M., 2002. Physicochemical properties of quinolone antibiotics in various environments. European Journal of Medicinal Chemistry, 37(6):443-460.

[47]Peng, H.B., Pan, B., Wu, M., et al., 2012a. Adsorption of ofloxacin on carbon nanotubes: solubility, pH and cosolvent effects. Journal of Hazardous Materials, 211-212:342-348.

[48]Peng, H.B., Pan, B., Wu, M., et al., 2012b. Adsorption of ofloxacin and norfloxacin on carbon nanotubes: hydrophobicity- and structure-controlled process. Journal of Hazardous Materials, 233-234:89-96.

[49]Peng, H.B., Li, H., Wang, C., et al., 2014. Sorption and solubility of ofloxacin and norfloxacin in water-methanol cosolvent. Chemosphere, 103:322-328.

[50]Peng, X., Li, Y.H., Luan, Z.K., et al., 2003. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 376(1-2):154-158.

[51]Petersen, E.J., Zhang, L., Mattison, N.T., et al., 2011. Potential release pathways, environmental fate, and ecological risks of carbon anotubes. Environmental Science & Technology, 45(23):9837-9856.

[52]Piao, L.Y., Liu, Q.R., Li, Y.D., et al., 2008. Adsorption of L-phenylalanine on single-walled carbon nanotubes. The Journal of Physical Chemistry C, 112(8):2857-2863.

[53]Popov, V.N., 2004. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 43(3):61-102.

[54]Rao, P.S.C., Homsby, A.G., Kilcrease, D.P., et al., 1985. Sorption and transport of hydrophobic organic chemicals in aqueous and mixed solvent systems: model development and preliminary evaluation. Journal of Environmental Quality, 14(3):376-383.

[55]Reilly, R.M., 2007. Carbon nanotubes: potential benefits and risks of nanotechnology in nuclear medicine. Journal of Nuclear Medicine, 48(7):1039-1042.

[56]Reinsch, B.C., Forsberg, B., Penn, R.L., et al., 2010. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44(9):3455-3461.

[57]Ren, X.M., Chen, C.L., Nagatsu, M., et al., 2011. Carbon nanotubes as adsorbents in environmental pollution management: a review. Chemical Engineering Journal, 170(2-3):395- 410.

[58]Schierz, A., Zanker, H., 2009. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environmental Pollution, 157(4):1088- 1094.

[59]Shao, D.D., Hu, J., Chen, C.L., et al., 2010a. Polyaniline multiwalled carbon nanotube magnetic composite prepared by plasma- induced graft technique and its application for removal of aniline and phenol. The Journal of Physical Chemistry C, 114(49):21524-21530.

[60]Shao, D.D., Sheng, G.D., Chen, C.L., et al., 2010b. Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere, 79(7):679-685.

[61]Shen, X.E., Shan, X.Q., Dong, D.M., et al., 2009. Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes. Journal of Colloid and Interface Science, 330(1):1-8.

[62]Sheng, G.D., Shao, D.D., Ren, X.M., et al., 2010. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 178(1-3):505-516.

[63]Tasis, D., Tagmatarchis, N., Bianco, A., et al., 2006. Chemistry of carbon nanotubes. Chemical Reviews, 106(3):1105-1136.

[64]Tong, Z., Bischoff, M., Nies, L., et al., 2007. Impact of fullerene (C60) on a soil microbial community. Environmental Science & Technology, 41(8):2985-2991.

[65]Tournus, F., Charlier, J.C., 2005. Ab initio study of benzene adsorption on carbon nanotubes. Physical Review B, 71(16):165421.

[66]Tournus, F., Latil, S., Heggie, M.I., et al., 2005. π-stacking interaction between carbon nanotubes and organic molecules. Physical Review B, 72(7):075431.

[67]Umbuzeiro, G.A., Coluci, V.R., Honorio, J.G., et al., 2011. Understanding the interaction of multi-walled carbon nanotubes with mutagenic organic pollutants using computational modeling and biological experiments. TrAC Trends in Analytical Chemistry, 30(3):437-446.

[68]van Wieren, E.M., Seymour, M.D., Peterson, J.W., 2012. Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: adsorption and breakdown. Science of The Total Environment, 441:1-9.

[69]Vermisoglou, E.C., Georgakilas, V., Kouvelos, E., et al., 2007. Sorption properties of modified single-walled carbon nanotubes. Microporous and Mesoporous Materials, 99(1-2):98-105.

[70]Wang, X.L., Lu, J.L., Xing, B.S., 2008. Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environmental Science & Technology, 42(9):3207-3212.

[71]Wang, Y.F., Shu, L., Jegatheesan, V., et al., 2010. Removaland adsorption of diuron through nanofiltration membrane: the effects of ionic environment and operating pressures. Separation and Purification Technology, 74(2):236-241.

[72]Wang, Z.Y., Yu, X.D., Pan, B., et al., 2010. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environmental Science & Technology, 44(3):978-984.

[73]Wigginton, N.S., Haus, K.L., Hochella, M.F.Jr, 2007. Aquatic environmental nanoparticles. Journal of Environmental Monitoring, 9(12):1306-1316.

[74]Woods, L.M., Badescu, S.C., Reinecke, T.L., 2007. Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B, 75(15):155415.

[75]Yang, K., Xing, B.S., 2007. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environmental Pollution, 145(2):529-537.

[76]Yang, K., Zhu, L.Z., Xing, B.S., 2006. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology, 40(6):1855-1861.

[77]Yang, K., Wu, W.H., Jing, Q.F., et al., 2008. Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environmental Science & Technology, 42(21):7931-7936.

[78]Yang, W.B., Lu, Y.P., Zheng, F.F., et al., 2012. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chemical Engineering Journal, 179: 112-118.

[79]Yang, Y.N., Chun, Y., Sheng, G.Y., et al., 2004. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon. Langmuir, 20(16):6736-6741.

[80]Zhang, D., Pan, B., Zhang, H., et al., 2010. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environmental Science & Technology, 44(10):3806-3811.

[81]Zhang, S.J., Shao, T., Bekaroglu, S.S.K., et al., 2009. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environmental Science & Technology, 43(15):5719-5725.

[82]Zhang, S.J., Shao, T., Bekaroglu, S.S.K., et al., 2010. Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry. Water Research, 44(6):2067-2074.

[83]Zhang, X., Pan, B., Yang, K., et al., 2010. Adsorption of sulfamethoxazole on different types of carbon nanotubes in comparison to other natural adsorbents. Journal of Environmental Science and Health, Part A, 45(12):1625-1634.

[84]Zhang, X., Kah, M., Jonker, M.T.O., et al., 2012. Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes. Environmental Science & Technology, 46(13):7166-7173.

[85]Zhao, J.J., Buldum, A., Han, J., et al., 2002. Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 13(2):195-200.

[86]Zou, M., Zhang, J., Chen, J., et al., 2012. Simulating adsorption of organic pollutants on finite (8,0) single- walled carbon nanotubes in water. Environmental Science & Technology, 46(16):8887-8894.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE