Full Text:   <4005>

Summary:  <776>

CLC number: U270.1+1

On-line Access: 2014-12-04

Received: 2014-07-04

Revision Accepted: 2014-10-07

Crosschecked: 2014-11-24

Cited: 19

Clicked: 11377

Citations:  Bibtex RefMan EndNote GB/T7714


Xue-song JIN


Liang LING


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.12 P.964-983


A 3D model for coupling dynamics analysis of high-speed train/track system*

Author(s):  Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin

Affiliation(s):  . State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Corresponding email(s):   xsjin@home.swjtu.edu.cn

Key Words:  High-speed railway, High-speed train, Track, Entire-train/track model (TTM), Single-vehicle/track model (VTM)

Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin. A 3D model for coupling dynamics analysis of high-speed train/track system[J]. Journal of Zhejiang University Science A, 2014, 15(12): 964-983.

@article{title="A 3D model for coupling dynamics analysis of high-speed train/track system",
author="Liang Ling, Xin-biao Xiao, Jia-yang Xiong, Li Zhou, Ze-feng Wen, Xue-song Jin",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A 3D model for coupling dynamics analysis of high-speed train/track system
%A Liang Ling
%A Xin-biao Xiao
%A Jia-yang Xiong
%A Li Zhou
%A Ze-feng Wen
%A Xue-song Jin
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 12
%P 964-983
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1400192

T1 - A 3D model for coupling dynamics analysis of high-speed train/track system
A1 - Liang Ling
A1 - Xin-biao Xiao
A1 - Jia-yang Xiong
A1 - Li Zhou
A1 - Ze-feng Wen
A1 - Xue-song Jin
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 12
SP - 964
EP - 983
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1400192

A 3D dynamic model of a high-speed train coupled with a flexible ballast track is developed and is presented in this study. In this model, each vehicle is modeled as a 42 degrees of freedom multi-body system, which takes into consideration the nonlinear dynamic characteristics of the suspensions. A detailed inter-vehicle connection model including nonlinear couplers and inter-vehicle dampers, and the linear tight-lock vestibule diaphragm is established to simulate the effect of the end connections of neighboring vehicles on dynamic behavior. The track is modeled as a traditional three-layer discrete elastic support model. The rails are assumed to be Timoshenko beams supported by discrete sleepers. Each sleeper is treated as an Euler beam and the ballast bed is replaced by equivalent rigid ballast bodies. The reliability of the present model is then validated through a detailed numerical simulation comparison with the commercial software SIMPACK, with the effect of the track flexibility on the train/track interaction being analyzed simultaneously. The proposed model is finally applied to investigate the difference between dynamic performances obtained using the entire-train/track model (TTM) and the single-vehicle/track model (VTM). Several key dynamic performances, including vibration frequency response, ride comfort, and curving performance, calculated by the two types of dynamic models are compared and discussed. The numerical results show that there is a significant difference between the dynamic behaviors obtained by VTM and TTM, and that inter-vehicle connections have an important influence on the dynamic behavior of high-speed vehicles.


基于车辆-轨道耦合动力学理论分析方法,建立一种高速列车-轨道三维耦合动力学模型,并明确列车-轨道耦合模型与单节车辆-轨道耦合模型在高速列车-轨道耦合动力学性能分析中的差异。 建立一种高速列车-轨道三维耦合动力学模型,模型中考虑列车的纵向动力学行为以及车间连接装置对列车中不同车辆动态响应的影响,并基本明确完善的列车-轨道耦合模型在高速列车-轨道耦合动力学性能分析中的重要性。 单节车辆-轨道耦合模型会过高地估计高速列车在运营过程中的振动响应和动力学性能指标,而完善的列车-轨道耦合动力学模型的计算结果则更加接近实际情况。

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Arnold, M., Burgermeister, B., Fhrer, C., 2011. Numerical methods in vehicle system dynamics: state of the art and current developments. Vehicle System Dynamics, 49(7):1159-1207. 

[2] Baeza, L., Ouyang, H., 2011. A railway track dynamics model based on modal substructuring and a cyclic boundary condition. Journal of Sound and Vibration, 330(1):75-86. 

[3] Cai, Y., Sun, H., Xu, C., 2008. Response of railway track system on poroelastic half-space soil medium subjected to a moving train load. International Journal of Solids and Structures, 45(18-19):5015-5034. 

[4] Chen, G., Zhai, W.M., 2004. A new wheel/rail spatially dynamic coupling model and its verification. Vehicle System Dynamics, 41(4):301-322. 

[5] Di Gialleonardo, E., Braghin, F., Bruni, S., 2012. The influence of track modelling options on the simulation of rail vehicle dynamics. Journal of Sound and Vibration, 331(19):4246-4258. 

[6] Evans, J., Berg, M., 2009. Challenges in simulation of rail vehicle dynamics. Vehicle System Dynamics, 47(8):1023-1048. 

[7] Frhling, R.D., 1998. Low frequency dynamic vehicle/track interaction: modelling and simulation. Vehicle System Dynamics, 29(S1):30-46. 

[8] Garg, V.K., Dukkipati, R.V., 1984.  Dynamics of Railway Vehicle Systems. Academic Press,Canada :

[9] Jin, X.S., Wu, P.B., Wen, Z.F., 2002. Effects of structure elastic deformations of wheelset and track on creep forces of wheel/rail in rolling contact. Wear, 253(1-2):247-256. 

[10] Jin, X.S., Wen, Z.F., Zhang, W.H., 2005. Numerical simulation of rail corrugation on curved track. Computers and Structures, 83(25-26):2052-2065. 

[11] Jin, X.S., Wen, Z.F., Wang, K.W., 2006. Three-dimensional train-track model for study of rail corrugation. Journal of Sound and Vibration, 293(3-5):830-855. 

[12] Jin, X.S., Xiao, X.B., Ling, L., 2013. Study on safety boundary for high-speed trains running in severe environments. International Journal of Rail Transportation, 1(1-2):87-108. 

[13] Ju, S.H., Li, H.C., 2011. Dynamic interaction analysis of trains moving on embankments during earthquakes. Journal of Sound and Vibration, 330(22):5322-5332. 

[14] Kalker, J.J., 1967.  On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction. PhD Thesis, Delft University,the Netherlands :

[15] Knothe, K., Grassie, S.L., 1993. Modeling of railway track and vehicle/track interaction at high frequencies. Vehicle System Dynamics, 22(3-4):209-262. 

[16] Lei, X.Y., Mao, L.J., 2004. Dynamic response analyses of vehicle and track coupled system on track transition of conventional high speed railway. Journal of Sound and Vibration, 271(3-5):1133-1146. 

[17] Nielsen, J.C., Igeland, A., 1995. Vertical dynamic interaction between train and track-influence of wheel and track imperfections. Journal of Sound and Vibration, 187(5):825-839. 

[18] Oscarsson, J., Dahlberg, T., 1998. Dynamic train/track/ballast interaction—computer models and full-scale experiments. Vehicle System Dynamics, 29(S1):73-84. 

[19] Popp, K., Kruse, H., Kaiser, I., 1999. Vehicle-track dynamics in the mid-frequency range. Vehicle System Dynamics, 31(5-6):423-464. 

[20] SAC (Standardization Administration of the Peoples Republic of China), 1985.  Railway vehiclesSpecification for evaluation the dynamic performance and accreditation test, GB/T 5599-85. (in Chinese), SAC,China :

[21] Shen, Z.Y., Hedrick, J.K., Elkins, J.A., 1983. A comparison of alternative creep-force models for rail vehicle dynamic analysis. Vehicle System Dynamics, 12(1-3):79-83. 

[22] Sun, Y.Q., Dhanasekar, M., 2002. A dynamic model for the vertical interaction of the rail track and wagon system. International Journal of Solids and Structures, 39(5):1337-1359. 

[23] Sun, Y.Q., Dhanasekar, M., Roach, D., 2003. A three-dimensional model for the lateral and vertical dynamics of wagon-track systems. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 217(1):31-45. 

[24] Tanabe, M., Matsumoto, N., Wakui, H., 2008. A simple and efficient numerical method for dynamic interaction analysis of a high-speed train and railway structure during an earthquake. Journal of Computational and Nonlinear Dynamics, 3(4):041002

[25] Wang, K., 1984. The track of wheel contact points and the calculation of wheel/rail geometric contact parameters. Journal of Southwest Jiaotong University, (in Chinese),19(1):88-99. 

[26] Wu, T.X., Thompson, D.J., 2002. Behaviour of the normal contact force under multiple wheel/rail interaction. Vehicle System Dynamics, 37(3):157-174. 

[27] Xia, H., Zhang, N., Roeck, G.D., 2003. Dynamic analysis of high-speed railway bridge under articulated trains. Computers and Structures, 81(26-27):2467-2478. 

[28] Xiao, X.B., Jin, X.S., Wen, Z.F., 2007. Effect of disabled fastening systems and ballast on vehicle derailment. Journal of Vibration and Acoustics, 129(2):217-229. 

[29] Xiao, X.B., Jin, X.S., Wen, Z.F., 2011. Effect of tangent track buckle on vehicle derailment. Multibody System Dynamics, 25(1):1-41. 

[30] Xiao, X.B., Ling, L., Jin, X.S., 2012. A study of the derailment mechanism of a high speed train due to an earthquake. Vehicle System Dynamics, 50(3):449-470. 

[31] Xiao, X.B., Ling, L., Xiong, J.Y., 2014. Study on the safety of operating high-speed railway vehicles subjected to crosswinds. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(9):694-710. 

[32] Yang, Y.B., Wu, Y.S., 2002. Dynamic stability of trains moving over bridges shaken by earthquakes. Journal of Sound and Vibration, 258(1):65-94. 

[33] Zhai, W.M., 1996. Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering, 39(24):4199-4214. 

[34] Zhai, W.M., Cai, C.B., Guo, S.Z., 1996. Coupling model of vertical and lateral vehicle/track interactions. Vehicle System Dynamics, 26(1):61-79. 

[35] Zhai, W.M., Wang, K.Y., Cai, C.B., 2009. Fundamentals of vehicle-track coupled dynamics. Vehicle System Dynamics, 47(11):1349-1376. 

[36] Zhang, S.G., 2009.  Design Method of High-speed Train. (in Chinese), Chinese Railway Press,Beijing, China :

[37] Zhou, L., Shen, Z.Y., 2013. Dynamic analysis of a high-speed train operating on a curved track with failed fasteners. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6):447-458. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE