Full Text:   <1492>

Summary:  <373>

CLC number: TH133.31

On-line Access: 2016-08-05

Received: 2015-05-19

Revision Accepted: 2015-10-13

Crosschecked: 2016-07-24

Cited: 3

Clicked: 2085

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Liang Ma

http://orcid.org/0000-0001-5091-4749

Jie-wei Lin

http://orcid.org/0000-0002-3325-589X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.8 P.614-631

http://doi.org/10.1631/jzus.A1500111


Dynamic characteristics analysis of a misaligned rotor–bearing system with squeeze film dampers


Author(s):  Liang Ma, Jun-hong Zhang, Jie-wei Lin, Jun Wang, Xin Lu

Affiliation(s):  State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China; more

Corresponding email(s):   j.lin@soton.ac.uk

Key Words:  Squeeze film damper (SFD), Gear coupling, Ball bearing, Elastohydrodynamic lubrication, Nonlinear dynamics, Misalignment fault


Liang Ma, Jun-hong Zhang, Jie-wei Lin, Jun Wang, Xin Lu. Dynamic characteristics analysis of a misaligned rotor–bearing system with squeeze film dampers[J]. Journal of Zhejiang University Science A, 2016, 17(8): 614-631.

@article{title="Dynamic characteristics analysis of a misaligned rotor–bearing system with squeeze film dampers",
author="Liang Ma, Jun-hong Zhang, Jie-wei Lin, Jun Wang, Xin Lu",
journal="Journal of Zhejiang University Science A",
volume="17",
number="8",
pages="614-631",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500111"
}

%0 Journal Article
%T Dynamic characteristics analysis of a misaligned rotor–bearing system with squeeze film dampers
%A Liang Ma
%A Jun-hong Zhang
%A Jie-wei Lin
%A Jun Wang
%A Xin Lu
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 8
%P 614-631
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500111

TY - JOUR
T1 - Dynamic characteristics analysis of a misaligned rotor–bearing system with squeeze film dampers
A1 - Liang Ma
A1 - Jun-hong Zhang
A1 - Jie-wei Lin
A1 - Jun Wang
A1 - Xin Lu
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 8
SP - 614
EP - 631
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500111


Abstract: 
In this paper, a dynamic model is established for a two-stage rotor system connected by a gear coupling and supported on ball bearings with squeeze film dampers (SFDs). The nonlinear dynamic behavior of the rotor system is studied under misalignment fault condition. The meshing force of the gear coupling is calculated considering the deformation of the tooth caused by torque transmission and dynamic vibration. The contact force between the ball and race is computed based on the Hertzian elastic contact deformation theory and the elastohydrodynamic lubrication theory. The supported force of SFD is simulated by integrating the pressure distribution derived from Reynolds’s equation. The equations of motion are rewritten in non-dimensional differential form, and the fourth-order Runge–Kutta method is employed to solve the nonlinear dynamic equilibrium equations iteratively. To verify the validity of the dynamic model and the correctness of the numerical solution method, the experimental power spectra of the rotor system under various misalignment degrees are compared with the analytical results. The effects of several important parameters, such as the lubrication of the ball bearing, the centralizing spring stiffness, the radial clearance of SFD, and the misalignment of gear coupling, on the dynamic characteristics of the rotor system are investigated and discussed mainly focusing on the system stability. The response spectra, bifurcation diagrams, and Pointcaré maps are analyzed accordingly. These parametric analyses are very helpful in the development of a high-speed rotor system and provide a theoretical reference for the vibration control and optimal design of rotating machinery.

The authors present a research work on the dynamic response of rotor-bearing system supported on squeeze film damper with misaligned gear coupling fault. It is a topic of interest to researchers in the related areas.

不对中故障下带挤压油膜阻尼器的滚动轴承转子系统的动力学分析

目的:工业的不断发展对航空发动机、泵、燃气轮机等旋转机械的动力性能提出了更高的要求。转子系统是旋转机械的重要组成部分。复杂的转子系统在高速运转时会产生故障和非线性振动,从而影响系统的可靠性。因此,开展转子系统的非线性动力性研究,研究转子系统在高速运转时的非线性响应及其抑制作用对转子系统的设计和故障诊断具有重要的意义。
创新点:1. 在建模的时候考虑转子系统的实际结构,在不对中模型中引入齿式联轴器啮合力,在滚动轴承模型中考虑弹流润滑影响;2. 探究挤压油膜阻尼器参数对转子系统非线性特性抑制的影响,总结其变化规律。
方法:1. 基于Hertz接触和弹流润滑理论,建立滚动轴承动力学模型,同时考虑齿式联轴器齿之间的啮合力,建立不对中故障下的齿式联轴器啮合力模型,并在此基础上,根据转子系统的支撑形式,建立0-2-1支撑的转子动力学模型;2. 开展转子动力学实验,验证模型的准确性并分析不对中量对系统频谱特性的影响;3. 在分析不对中故障非线性特性的基础上,研究挤压油膜阻尼器参数对于非线性特性抑制的作用。
结论:1. 齿式联轴器啮合作用和滚动轴承的弹流润滑对不对中故障下转子系统的失稳产生一定的影响,润滑会导致系统发生分岔的窗口推迟;2. 对于转子系统的弹性支撑,其一阶临界转速和振幅随着刚度的增大而增大,选择合适的刚度有利于转子系统的稳定运行;3. 挤压油膜阻尼器的参数对转子系统故障引起的非线性具有较好的抑制作用,其作用的大小取决于不对中量和挤压油膜阻尼器的油膜间隙的耦合,合理地调节油膜间隙有助于增大系统的稳定区间范围。

关键词:挤压油膜阻尼器;齿式联轴器;滚动轴承;弹流润滑;非线性动力学;不对中故障

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alfares, M.A., Elsharkawy, A.A., 2003. Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system. Journal of Materials Processing Technology, 136(1-3):48-59.

[2]Al-Hussain, K., Redmond, I., 2002. Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment. Journal of Sound and Vibration, 249(3):483-498.

[3]Cameron, A., Mc Ettles, C., 1976. Basic Lubrication Theory. Ellis Horwood Ltd., UK.

[4]Chang-Jian, C.W., 2010. Non-linear dynamic analysis of a HSFD mounted gear-bearing system. Nonlinear Dynamics, 62(1-2):333-347.

[5]Chang-Jian, C.W., Kuo, J.K., 2009. Bifurcation and chaos for porous squeeze film damper mounted rotor–bearing system lubricated with micropolar fluid. Nonlinear Dynamics, 58(4):697-714.

[6]Chang-Jian, C.W., Yau, H.T., Chen, J.L., 2010. Nonlinear dynamic analysis of a hybrid squeeze-film damper-mounted rigid rotor lubricated with couple stress fluid and active control. Applied Mathematical Modelling, 34(9):2493-2507.

[7]Hagiu, G.D., Gafitanu, M.D., 1997. Dynamic characteristics of high speed angular contact ball bearings. Wear, 211(1):22-29.

[8]Hamrock, B.J., Dowson, D., 1977. Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results. Journal of Lubrication Technology, 99(2):264-275.

[9]Harris, T., 1991. Rolling Bearing Analysis. John Wiley and Sons, Inc., USA, p.1013.

[10]Harsha, S.P., 2006. Nonlinear dynamic analysis of a high-speed rotor supported by rolling element bearings. Journal of Sound and Vibration, 290(1-2):65-100.

[11]Harsha, S.P., Sandeep, K., Prakash, R., 2003. The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings. International Journal of Mechanical Sciences, 45(4):725-740.

[12]Hertz, H., 1881. On the contact of elastic solids. Journal Fur Die Reine Und Angewandte Mathematik, 92(110):156-171.

[13]Houpert, L., 1997. A uniform analytical approach for ball and roller bearings calculations. Journal of Tribology, 119(4):851-858.

[14]Inayat-Hussain, J.I., 2005. Bifurcations of a flexible rotor response in squeeze-film dampers without centering springs. Chaos, Solitons & Fractals, 24(2):583-596.

[15]Inayat-Hussain, J.I., 2009. Bifurcations in the response of a flexible rotor in squeeze-film dampers with retainer springs. Chaos, Solitons & Fractals, 39(2):519-532.

[16]Lee, Y.S., Lee, C.W., 1999. Modeling and vibration analysis of misaligned rotor-ball bearing systems. Journal of Sound and Vibration, 224(1):49-67.

[17]Li, M., Yu, L., 2001. Analysis of the coupled lateral torsional vibration of a rotor-bearing system with a misaligned gear coupling. Journal of Sound and Vibration, 243(2):283-300.

[18]Liu, H., Xu, H., Ellison, P.J., et al., 2010. Application of computational fluid dynamics and fluid–structure interaction method to the lubrication study of a rotor–bearing system. Tribology Letters, 38(3):325-336.

[19]Ma, H., Li, H., Niu, H., et al., 2013. Nonlinear dynamic analysis of a rotor-bearing-seal system under two loading conditions. Journal of Sound and Vibration, 332(23):6128-6154.

[20]Ma, H., Li, H., Niu, H., et al., 2014. Numerical and experimental analysis of the first and second-mode instability in a rotor-bearing system. Archive of Applied Mechanics, 84(4):519-541.

[21]Ma, H., Wang, X., Niu, H., et al., 2015. Oil-film instability simulation in an overhung rotor system with flexible coupling misalignment. Archive of Applied Mechanics, 85(7):893-907.

[22]Maday, C.J., 2002. The foundation of the Sommerfeld transformation. Journal of Tribology, 124(3):645-646.

[23]Nonato, F., Cavalca, K.L., 2014. An approach for including the stiffness and damping of elastohydrodynamic point contacts in deep groove ball bearing equilibrium models. Journal of Sound and Vibration, 333(25):6960-6978.

[24]Prabhakar, S., Sekhar, A., Mohanty, A., 2001. Vibration analysis of a misaligned rotor–coupling–bearing system passing through the critical speed. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(12):1417-1428.

[25]Prabhakar, S., Sekhar, A., Mohanty, A., 2002. Crack versus coupling misalignment in a transient rotor system. Journal of Sound and Vibration, 256(4):773-786.

[26]Rahnejat, H., Gohar, R., 1985. The vibrations of radial ball bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 199(3):181-193.

[27]Rohde, S.M., Li, D.F., 1980. A generalized short bearing theory. Journal of Lubrication Technology, 102(3):278-281.

[28]Rybczynski, J., 2006. Evaluation of tolerable misalignment areas of bearings of multi-support rotating machine. ASME Turbo Expo 2006: Power for Land, Sea, and Air, Barcelona, Spain, p.1179-1186.

[29]Rybczynski, J., 2011. The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features. Mechanical Systems and Signal Processing, 25(2):521-536.

[30]Sinou, J.J., 2009. Non-linear dynamics and contacts of an unbalanced flexible rotor supported on ball bearings. Mechanism and Machine Theory, 44(9):1713-1732.

[31]Tian, L., Wang, W.J., Peng, Z.J., 2012. Effects of bearing outer clearance on the dynamic behaviours of the full floating ring bearing supported turbocharger rotor. Mechanical Systems and Signal Processing, 31:155-175.

[32]Wan, Z., Jing, J.P., Meng, G., et al., 2012. Theoretical and experimental study on the dynamic response of multi-disk rotor system with flexible coupling misalignment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(12):2874-2886.

[33]Wijnant, Y.H., Wensing, J.A., Nijen, G.C., 1999. The influence of lubrication on the dynamic behavior of ball bearings. Journal of Sound and Vibration, 222(4):579-596.

[34]Xu, M., Marangoni, R., 1994. Vibration analysis of a motor-flexible coupling-rotor system subject to misalignment and unbalance, part I: theoretical model and analysis. Journal of Sound and Vibration, 176(5):681-691.

[35]Zhang, Y.Y., Wang, X.L., Zhang, X.Q., et al., 2014. Dynamic analysis of a high-speed rotor-ball bearing system under elastohydrodynamic lubrication. Journal of Vibration and Acoustics, 136(6):061003.

[36]Zhao, G., Liu, Z., Chen, F., 2008. Meshing force of misaligned spline coupling and the influence on rotor system. International Journal of Rotating Machinery, 2008: 321308.

[37]Zhao, J., Linnett, I., Mclean, L., 1994. Subharmonic and quasi-periodic motions of an eccentric squeeze film damper-mounted rigid rotor. Journal of Vibration and Acoustics, 116(3):357-363.

[38]Zhou, H.L., Luo, G.H., Chen, G., et al., 2013. Analysis of the nonlinear dynamic response of a rotor supported on ball bearings with floating-ring squeeze film dampers. Mechanism and Machine Theory, 59:65-77.

[39]Zhu, C., Robb, D., Ewins, D., 2002. Analysis of the multiple-solution response of a flexible rotor supported on non-linear squeeze film dampers. Journal of Sound and Vibration, 252(3):389-408.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE