Full Text:   <2961>

Summary:  <1891>

CLC number: O327; TB633; U663.2

On-line Access: 2016-04-05

Received: 2015-06-27

Revision Accepted: 2015-10-19

Crosschecked: 2016-03-10

Cited: 2

Clicked: 4757

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Dong Tang

http://orcid.org/0000-0003-4586-5609

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2016 Vol.17 No.4 P.295-316

http://doi.org/10.1631/jzus.A1500191


Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix


Author(s):  Xiong-liang Yao, Dong Tang, Fu-zhen Pang, Shuo Li

Affiliation(s):  College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

Corresponding email(s):   tangdong@hrbeu.edu.cn, pangfuzhen@hrbeu.edu.cn

Key Words:  Open circular cylindrical shell, Method of reverberation-ray matrix, Free vibration analysis, Donnell-Mushtari-Vlasov thin shell theory, Analytical wave form solution


Xiong-liang Yao, Dong Tang, Fu-zhen Pang, Shuo Li. Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix[J]. Journal of Zhejiang University Science A, 2016, 17(4): 295-316.

@article{title="Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix",
author="Xiong-liang Yao, Dong Tang, Fu-zhen Pang, Shuo Li",
journal="Journal of Zhejiang University Science A",
volume="17",
number="4",
pages="295-316",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500191"
}

%0 Journal Article
%T Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix
%A Xiong-liang Yao
%A Dong Tang
%A Fu-zhen Pang
%A Shuo Li
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 4
%P 295-316
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500191

TY - JOUR
T1 - Exact free vibration analysis of open circular cylindrical shells by the method of reverberation-ray matrix
A1 - Xiong-liang Yao
A1 - Dong Tang
A1 - Fu-zhen Pang
A1 - Shuo Li
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 4
SP - 295
EP - 316
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500191


Abstract: 
This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. Based on the donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional traveling wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design structures with thin shell components.

This is a pretty nice work on free vibration analysis of OCCSs using the method of reverberation-ray matrix (MRRM). All the formulations are derived correctly, which are further validated through numerical comparison.

开口圆柱壳的回传射线矩阵法精确自由振动分析

目的:开口圆柱壳作为板壳组合结构的组成部分被广泛应用于工程实践中。本文探讨开口圆柱壳结构参数(长度、半径、厚度和夹角等)和边界条件对其振动特性的影响,这对工程结构的减振设计具有重要意义。通过推导开口圆柱壳的解析解及其求解过程,建立加筋开口圆柱壳和板-壳耦合模型振动分析的理论基础。
创新点:1. 推导行波与驻波结合形式的解析解;2. 建立回传射线矩阵法分析开口圆柱壳结构振动的流程;3. 分析得到大模态数下开口圆柱壳固有频率随壳厚线性变化;直边简支时,曲边边界条件对固有频率影响不大。
方法:1. 基于Donnell-Mushtari-Vlasov (DMV)薄壳理论,推导两对边简支的开口圆柱壳行波与驻波结合形式的解析解;2. 基于回传射线矩阵法原理,推导出开口圆柱壳的固有频率方程;3. 采用黄金分割法求解开口圆柱壳的固有频率方程,得到精确的固有频率;4. 分析开口圆柱壳不同结构参数和边界条件对固有频率的影响。
结论:1. 回传射线矩阵法适用于开口圆柱壳的振动分析且具有很高的精度;2. 开口圆柱壳的固有频率随其长度的增加而减小;3. 对于绝大部分模态数,开口圆柱壳的固有频率随其半径的增加而减小;4. 开口圆柱壳的固有频率随壳厚的增加而增加,当周向模态数n=1和2时,不同壳厚的开口圆柱壳固有频率相差很小,当周向模态数n≥7时,开口圆柱壳的固有频率随壳厚线性变化;5. 对于绝大多数模态数,开口圆柱壳的固有频率随夹角的增大而快速减小;6. 对于两曲边简支的开口圆柱壳,其固有频率从高到低对应两直边的边界条件为固支、简支和自由;7. 对于两直边简支的开口圆柱壳,两曲边的边界条件对其固有频率的影响不大。

关键词:开口圆柱壳;回传射线矩阵法;自由振动分析;DMV薄壳理论;解析波动形式解

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cantin, G., Clough, R.W., 1968. A curved, cylindrical-shell, finite element. AIAA Journal, 6(6):1057-1062.

[2]Chen, M., Mao, H.Y., Sun, G.J., 2005. The effects of damping on the transient response of frames using the method of reverberation ray matrix. Journal of Shanghai Jiaotong University, 39(1):154-156 (in Chinese).

[3]Cheung, Y.K., Li, W.Y., Tham, L.G., 1989. Free vibration analysis of singly curved shell by spline finite strip method. Journal of Sound and Vibration, 128(3):411-422.

[4]Guo, Y.Q., 2008. The Method of Reverberation-ray Matrix and Its Applications. PhD Thesis, Zhejiang University, Hangzhou, China (in Chinese).

[5]Guo, Y.Q., Chen, W.Q., 2008. On free wave propagation in anisotropic layered media. Acta Mechanica Solida Sinica, 21(6):500-506.

[6]Guo, Y.Q., Fang, D.N., 2014. Analysis and interpretation of longitudinal waves in periodic multiphase rods using the method of reverberation-ray matrix combined with the Floquet-Bloch theorem. Journal of Vibration Acoustics, 136(1):011006.

[7]Guo, Y.Q., Chen, W.Q., Pao, Y.H., 2008. Dynamic analysis of space frames: the method of reverberation-ray matrix and the orthogonality of normal modes. Journal of Sound and Vibration, 317(3-5):716-738.

[8]Howard, S.M., Pao, Y.H., 1998. Analysis and experiments on stress waves in planar trusses. Journal of Engineering Mechanics, 124(8):884-891.

[9]Jiang, J.Q., 2011. Transient responses of Timoshenko beams subject to a moving mass. Journal of Vibration and Control, 17(13):1975-1982.

[10]Jiang, J.Q., Chen, W.Q., Pao, Y.H., 2011. Reverberation-ray analysis of continuous Timoshenko beams subject to moving loads. Journal of Vibration and Control, 18(6):774-784.

[11]Lakis, A.A., Selmane, A., 2000. Hybrid finite element analysis of large amplitude vibration of orthotropic open and closed cylindrical shells subjected to a flowing fluid. Nuclear Engineering and Design, 196(1):1-15.

[12]Leissa, A.W., 1973. Vibration of shells. Scientific and Technical Information Office, NASA, Washington DC, USA, p.5-175.

[13]Leissa, A.W., Narita, Y., 1984. Vibrations of completely free shallow shells of rectangular planform. Journal of Sound and Vibration, 96(2):207-218.

[14]Li, B.R., Wang, X.Y., Ge, H.L., et al., 2005. Study on applicability of modal analysis of thin finite length cylindrical shells using wave propagation approach. Journal of Zhejiang University-SCIENCE A, 6(10):1122-1127.

[15]Li, F.M., Liu, C.C., Shen, S., et al., 2012. Application of the method of reverberation ray matrix to the early short time transient responses of stiffened laminated composite plates. Journal of Applied Mechanics, 79(4):04100.

[16]Lim, C.W., Liew, K.M., 1995. A higher order theory for vibration of shear deformable cylindrical shallow shells. International Journal of Mechanical Sciences, 37(3):277-295.

[17]Liu, C.C., Li, F.M., Fang, B., et al., 2010. Active control of power flow transmission in finite connected plate. Journal of Sound and Vibration, 329(20):4124-4135.

[18]Liu, C.C., Li, F.M., Liang, T.W., et al., 2011a. Early short time transient response of finite L-shaped Mindlin plate. Wave Motion, 48(5):371-391.

[19]Liu, C.C., Li, F.M., Huang, W.H., 2011b. Transient wave propagation and early short time transient responses of laminated composite cylindrical shells. Composite Structures, 93(10):2587-2597.

[20]Liu, C.C., Li, F.M., Chen, Z.B., et al., 2013. Transient wave propagation in the ring stiffened laminated composite cylindrical shells using the method of reverberation ray matrix. The Journal of the Acoustical Society of America, 133(2):770-780.

[21]Liu, G.B., Xie, K.H., 2005. Transient response of a spherical cavity with a partially sealed shell embedded in viscoelastic saturated soil. Journal of Zhejiang University-SCIENCE A, 6(3):194-201.

[22]Liu, J., Miao, F.X., Sun, G.J., 2006. Modal analysis of frames with reverberation ray matrix method. Journal of Vibration, Measurement & Diagnosis, 26(4):322-323 (in Chinese).

[23]Mecitoglu, Z., Dokmeci, M.C., 1992. Free vibrations of a thin, stiffened, cylindrical shallow shell. AIAA Journal, 30(3):848-850.

[24]Miao, F.X., Sun, G.J., Chen, K.F., 2013. Transient response analysis of balanced laminated composite beams by the method of reverberation-ray matrix. International Journal of Mechanical Sciences, 77:121-129.

[25]Miao, F.X., Sun, G.J., Chen, K.F., et al., 2015. Reverberation-ray matrix analysis of the transient dynamic responses of asymmetrically laminated composite beams based on the first-order shear deformation theory. Composite Structures, 119:394-411.

[26]Nayak, A.N., Bandyopadhyay, J.N., 2002. On the free vibration of stiffened shallow shells. Journal of Sound and Vibration, 255(2):357-382.

[27]Pao, Y.H., Keh, D.C., Howard, S.M., 1999. Dynamic response and wave propagation in plane trusses and frames. AIAA Journal, 37(5):594-603.

[28]Pao, Y.H., Su, X.Y., Tian, J.Y., 2000. Reverberation matrix method for propagation of sound in a multilayered liquid. Journal of Sound and Vibration, 230(4):743-760.

[29]Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al., 1992. Numerical Recipies in C: the Art of Scientific Computing, 2nd Edition. Cambridge University Press, Cambridge, UK, p.397-401.

[30]Price, N.M., Liu, M., Taylor, R.E., et al., 1998. Vibrations of cylindrical pipes and open shells. Journal of Sound and Vibration, 218(3):361-387.

[31]Qatu, M.S., 2002. Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: laminated composite shells. Applied Mechanics Reviews, 55(4):325-350.

[32]Qatu, M.S., Sullivan, R.W., Wang, W.C., 2010. Recent research advances on the dynamic analysis of composite shells: 2000–2009. Composite Structures, 93(1):14-31.

[33]Qiao, H., Chen, W.Q., 2011. Analysis of the penalty version of the Arlequin framework for the prediction of structural responses with large deformations. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(7):552-560.

[34]Selmane, A., Lakis, A.A., 1997a. Dynamic analysis of anisotropic open cylindrical shells. Computers & Structures, 62(1):1-12.

[35]Selmane, A., Lakis, A.A., 1997b. Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid. Journal of Fluids and Structures, 11(1):111-134.

[36]Sewall, J.L., 1967. Vibration analysis of cylindrically curved panels with simply supported or clamped edges and comparison with some experiments. Technical Report No. NASA TN D-3791, Langley Research Center, NASA, Washington DC, USA.

[37]Singh, A.V., Shen, L.B., 2005. Free vibration of open circular cylindrical composite shells with point supports. Journal of Aerospace Engineering, 18(2):120-128.

[38]Su, X.Y., Tian, J.Y., Pao, Y.H., 2002. Application of the reverberation-ray matrix to the propagation of elastic waves in a layered solid. International Journal of Solids and Structures, 39(21-22):5447-5463.

[39]Su, Z., Jin, G.Y., Ye, T.G., 2014. Free vibration analysis of moderately thick functionally graded open shells with general boundary conditions. Composite Structures, 117: 169-186.

[40]Suzuki, K., Leissa, A.W., 1986. Exact solutions for the free vibrations of open cylindrical shells with circumferentially varying curvature and thickness. Journal of Sound and Vibration, 107(1):1-15.

[41]Tian, J.Y., Su, X.Y., 2000. Transient axisymmetric elastic waves in finite orthotropic cylindrical shells. Acta Scientiarum Naturalium Universitatis Pekinensis, 36(3):365-372 (in Chinese).

[42]Tian, J.Y., Xie, Z.M., 2009. A hybrid method for transient wave propagation in a multilayered solid. Journal of Sound and Vibration, 325(1-2):161-173.

[43]Tian, J.Y., Li, Z., Su, X.Y., 2003. Crack detection in beams by wavelet analysis of transient flexural waves. Journal of Sound and Vibration, 261(4):715-727.

[44]Toorani, M.H., Lakis, A.A., 2001. Shear deformation in dynamic analysis of anisotropic laminated open cylindrical shells filled with or subjected to a flowing fluid. Computer Methods in Applied Mechanics and Engineering, 190(37-38):4929-4966.

[45]Vajda, S., 2007. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Dover Publications, New York, USA.

[46]Ye, T.G., Jin, G.Y., Su, Z., et al., 2014a. A unified Chebyshev–Ritz formulation for vibration analysis of composite laminated deep open shells with arbitrary boundary conditions. Archive of Applied Mechanics, 84(4):441-471.

[47]Ye, T.G., Jin, G.Y., Chen, Y.H., et al., 2014b. A unified formulation for vibration analysis of open shells with arbitrary boundary conditions. International Journal of Mechanical Sciences, 81:42-59.

[48]Yu, C.L., Chen, Z.P., Wang, J., et al., 2012. Effect of weld reinforcement on axial plastic buckling of welded steel cylindrical shells. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(2):79-90.

[49]Yu, S.D., Cleghorn, W.L., Fenton, R.G., 1995. On the accurate analysis of free vibration of open circular cylindrical shells. Journal of Sound and Vibration, 188(3):315-336.

[50]Yu, Y., 2007a. Stress wave propagation and study on influencing factor in frame structure embedded partially in soil. Chinese Journal of Computational Mechanics, 24(5):659-663 (in Chinese).

[51]Yu, Y., 2007b. Studies on wave responses of a defective frame structure embedded partially in soil and influence factors. Journal of Vibration Engineering, 20(2):194-199 (in Chinese).

[52]Zhang, L., Xiang, Y., 2006. Vibration of open circular cylindrical shells with intermediate ring supports. International Journal of Solids and Structures, 43(13):3705-3722.

[53]Zhang, X.M., Liu, G.R., Lam, K.Y., 2001. Frequency analysis of cylindrical panels using a wave propagation approach. Applied Acoustics, 62(5):527-543.

[54]Zhou, Y.Y., Chen, W.Q., Lv, C.F., et al., 2009. Reverberation-ray matrix analysis of free vibration of piezoelectric laminates. Journal of Sound and Vibration, 326(3-5):821-836.

[55]Zhu, J., Ye, G.R., Xiang, Y.Q., et al., 2011. Recursive formulae for wave propagation analysis of FGM elastic plates via reverberation-ray matrix method. Composite Structures, 93(2):259-270.

[56]Zhu, J., Chen, W.Q., Ye, G.R., 2012. Reverberation-ray matrix analysis for wave propagation in multiferroic plates with imperfect interfacial bonding. Ultrasonics, 52(1):125-132.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE