CLC number: TU45
On-line Access: 2016-11-03
Received: 2015-08-18
Revision Accepted: 2016-03-07
Crosschecked: 2016-10-13
Cited: 2
Clicked: 5109
Wei Liu, Bettina Albers, Yu Zhao, Xiao-wu Tang. Upper bound analysis for estimation of the influence of seepage on tunnel face stability in layered soils[J]. Journal of Zhejiang University Science A, 2016, 17(11): 886-902.
@article{title="Upper bound analysis for estimation of the influence of seepage on tunnel face stability in layered soils",
author="Wei Liu, Bettina Albers, Yu Zhao, Xiao-wu Tang",
journal="Journal of Zhejiang University Science A",
volume="17",
number="11",
pages="886-902",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1500233"
}
%0 Journal Article
%T Upper bound analysis for estimation of the influence of seepage on tunnel face stability in layered soils
%A Wei Liu
%A Bettina Albers
%A Yu Zhao
%A Xiao-wu Tang
%J Journal of Zhejiang University SCIENCE A
%V 17
%N 11
%P 886-902
%@ 1673-565X
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1500233
TY - JOUR
T1 - Upper bound analysis for estimation of the influence of seepage on tunnel face stability in layered soils
A1 - Wei Liu
A1 - Bettina Albers
A1 - Yu Zhao
A1 - Xiao-wu Tang
J0 - Journal of Zhejiang University Science A
VL - 17
IS - 11
SP - 886
EP - 902
%@ 1673-565X
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1500233
Abstract: Tunnel face stability is important for safe tunneling and the protection of the surrounding environment. upper bound analysis is a widely applied method to investigate tunnel face stability. In this paper, a tunnel face collapse of Guangzhou metro line 3 is presented. Accordingly, seepage is considered in the upper bound solutions for face stability in layered soils. Steady-state seepage is reached in the first 1200 s of each drilling step. In the crossed layer, the seepage flow is horizontal toward the tunnel face, whereas in the cover layer, the seepage vertically percolates into the crossed layer. By considering the seepage forces on the tunnel face and on the soil particles, the upper bound solution for the support pressure needed for face stability in layered soil with seepage is obtained. Under saturated conditions, the support pressure is influenced by the variation of the depth ratio due to the seepage effect. Moreover, the support pressure depends linearly on the groundwater level. This study provides estimations of the support pressure for face stability in tunnel design.
The paper presents an interesting analysis on the tunnel face stability derived in layered soils obeying Mohr-Coulomb failure criterion under seepage flow conditions by the kinematic approach of the limit analysis. The work is mainly conducted based on the multi-layered failure mechanism of Tang et al (2014), and the seepage force, which is regarded as a body force in the work calculation, is calculated with the elementary theory for semi-confined aquifers (Verruijt, 1970). Comparative calculations are presented in order to discuss the effect of some model parameters, mainly the tunnel diameter and the groundwater level. The Authors conclude that the seepage effect significantly affects the stability of a tunnel face; especially the required support pressure is proportional to the hydrostatic hydraulic head. In a word, the manuscript is very well-written with convincing results.
[1]Anagnostou, G., Kovári, K., 1996. Face stability conditions with earth pressure balanced shields. Tunnelling and Underground Space Technology, 11(2):165-173.
[2]Atkinson, J.H., Potts, D.M., 1977. Stability of a shallow circular tunnel in cohesion-less soil. Géotechnique, 27(2):203-215.
[3]Babendererde, S., Hoek, E., Marinos, P., et al., 2004. Geological risk in the use of TBMs in heterogeneous rock masses–the case of “Metro do Porto” and the measures adopted. Courses on Geotechnical Risk in Rock Tunnels, University of Aveiro, Portugal.
[4]Borghi, F.X., Mair, R.J., 2006. Soil conditioning under London. T&T International, 9(6):18-20.
[5]Broere, W., 1998. Face stability calculations for a slurry shield in heterogeneous soft soils. In: Negro, A.Jr., Ferreira, A.A. (Eds.), Tunnels and Metropolises. Rotterdam, Balkema, France, p.215-218.
[6]Broere, W., 2001. Tunnel Face Stability & New CPT Applications. PhD Thesis, Geotechnical Laboratory, Delft University of Technology, Delft, the Netherland.
[7]Broere, W., van Tol, A.F., 2000. Influence of infiltration and groundwater flow on tunnel face stability. In: Kusakabe, O., Fujita, K., Miyazaki, Y. (Eds.), Geotechnical Aspects of Underground Construction in Soft Ground. Balkema, France, p.339-344.
[8]Chambon, P., Corté, J.F., 1994. Shallow tunnels in cohesionless soil: stability of tunnel face. Journal of Geotechnical Engineering, 120(7):1148-1165.
[9]Chen, W.F., Liu, X.L., 1990. Limit Analysis in Soil Mechanics. Elsevier, New York, USA.
[10]Davis, E.H., Gunn, M.J., Mair, R.J., et al., 1980. The stability of shallow tunnels and underground openings in cohesive material. Geotechnique, 30(4):397-416.
[11]de Buhan, P., Cuvillier, A., Dormieux, L., et al., 1999. Face stability of shallow circular tunnels driven under the water table: a numerical analysis. International Journal for Numerical Analytical Methods in Geo-mechanics, 23(1):79-95.
[12]Gugliemetti, V., Grasso, P., Mahtab, A., et al., 2008. Mechanized Tunneling in Urban Areas. Taylor & Francis, London, UK.
[13]Holtz, R.D., Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. Prentice-Hall, Inc., USA.
[14]Horn, N., 1961. Horizontaler Erddruck auf Senkrechte Abschlussflächen von Tunnelröhren. In: Landeskonferenz der Ungarischen Tiefbauindustrie. German Geotechnical Society, Germany, p.7-16 (in German).
[15]Huang, Z.R., Zhu, W., Liang, J.H., et al., 2006. A study on the limit support pressure at excavation face of shield tunneling. China Civil Engineering Journal, 39(10):112-116 (in Chinese).
[16]Ibrahim, E., Soubra, A.H., Mollon, G., et al., 2015. Three-dimensional face stability analysis of pressurized tunnels driven in a multi-layered purely frictional medium. Tunnelling and Underground Space Technology, 49(3):18-34.
[17]Jancsecz, S., Steiner, W., 1994. Face support for a large mix-shield in heterogenous ground conditions. In: Tunneling’94. Institution of Mining and Metallurgy, London, UK, p.531-550.
[18]Leca, E., Dormieux, L., 1990. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Geotechnique, 40(4):581-606.
[19]Lee, I.M., Nam, S.W., 2001. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels. Tunnelling and Underground Space Technology, 16(1):31-40.
[20]Lee, I.M., Nam, S.W., Ahn, J.H., 2003. Effect of seepage forces on tunnel face stability. Canadian Geotechnical Journal, 40(2):342-350.
[21]Liu, X.Y., Yuan, D.J., 2014. An in-situ slurry fracturing test for slurry shield tunneling. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 15(7):465-481.
[22]Lv, X.L., Wang, H.R., Huang, M.S., 2014. Upper bound solution for the face stability of shield tunnel below the water table. Mathematical Problems in Engineering, 2014: 72964.
[23]Maidl, B., Herrenknecht, M., Maidl, U., et al., 1996. Mechanised Shield Tunneling, 2nd Edition. John Wiley & Sons, Germany.
[24]Maidl, U., Cordes, H., 2003. Active Earth Pressure with Foam. Would Tunnel Congress, Amsterdam, the Netherland, p.791-797.
[25]Michalowski, R.L., 1995. Slope stability analysis: a kinematical approach. Géotechnique, 45(2):283-293.
[26]Mollon, G., Dias, D., Soubra, A., 2010. Face stability analysis of circular tunnels driven by a pressurized shield. Journal of Geotechnical and Geoenvironmental Engineering, 136(1):215-229.
[27]Perazzelli, P., Leone, T., Anagnostou, G., 2014. Tunnel face stability under seepage flow conditions. Tunnelling and Underground Space Technology, 43:459-469.
[28]Powrie, W., 2002. Soil Mechanics Concept & Application, 2nd Edition. Taylor & Francis, London, UK.
[29]Senent, S., Jimenez, R., 2015. A tunnel face failure mechanism for layered ground, considering the possibility of partial collapse. Tunnelling and Underground Space Technology, 49:182-192.
[30]Soubra, A., 2000. Static and seismic passive earth pressure coefficients on rigid retaining structures. Canadian Geotechnical Journal, 37(2):463-478.
[31]Tang, X.W., Liu, W., Albers, B., et al., 2014. Upper bound analysis of tunnel face stability in layered soil. Acta Geotechnica, 9(4):661-671.
[32]Verruijt, A., 1970. Theory of Groundwater Flow. MacMillan, London, UK.
[33]Viratjandr, C., Michalowski, R.L., 2006. Limit analysis of submerged slopes subjected to water drawdown. Canadian Geotechnical Journal, 43(8):802-814.
[34]Whitlow, R., 1991. Basic Soil Mechanics, 3rd Edition. Longman Group Limited, UK.
[35]Yang, X., Gong, G.F., Yang, H.Y., et al., 2015. A cutterhead energy-saving technique for shield tunneling machines based on load characteristic prediction. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 16(5):418-426.
[36]Yin, Y.S., Chen, R.P., Li, Y.C., et al., 2016. A column system for modeling bentonite slurry infiltration in sands. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(10):818-827.
[37]Zhu, W.B., Ju, S.J., Shi, H.O., 2002. Guangzhou Metro Line 3 Shield Tunnelling Technology. Jinan University Press, Guangzhou, China (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>