CLC number: TH161.12
On-line Access: 2017-07-04
Received: 2016-07-29
Revision Accepted: 2016-10-09
Crosschecked: 2017-06-12
Cited: 0
Clicked: 4452
Chen Ji, Fang-ye Lin, Jun Zou. Experimental investigation of vortex-ring cavitation[J]. Journal of Zhejiang University Science A, 2017, 18(7): 545-552.
@article{title="Experimental investigation of vortex-ring cavitation",
author="Chen Ji, Fang-ye Lin, Jun Zou",
journal="Journal of Zhejiang University Science A",
volume="18",
number="7",
pages="545-552",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1600537"
}
%0 Journal Article
%T Experimental investigation of vortex-ring cavitation
%A Chen Ji
%A Fang-ye Lin
%A Jun Zou
%J Journal of Zhejiang University SCIENCE A
%V 18
%N 7
%P 545-552
%@ 1673-565X
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1600537
TY - JOUR
T1 - Experimental investigation of vortex-ring cavitation
A1 - Chen Ji
A1 - Fang-ye Lin
A1 - Jun Zou
J0 - Journal of Zhejiang University Science A
VL - 18
IS - 7
SP - 545
EP - 552
%@ 1673-565X
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1600537
Abstract: Vortex-ring cavitation occurs when the pressure inside a torus-shaped core of a vortex ring falls below the vapor pressure of the ambient liquid. By generating a vapor bubble in a rigid tube, a toroidal cavity can be produced outside the tube. The pulsation and propagation behaviors of vortex-ring cavitation are studied using a high-speed video camera and a hydrophone. The experimental results show that the cavity continues to oscillate with a period that depends heavily on the maximal cross-section radius of the cavity and circulation of the vortex flow, under the influence of the surrounding vortex flow field. It is also shown that the cross-radial oscillation of the toroidal cavity can be measured both by a high-speed camera and hydrophone. Moreover, three different methods for estimating the circulation are compared to propose an accurate model of toroidal cavity oscillation. The phenomenon of a toroidal cavity impinging on a fixed wall is also investigated.
[1]Chahine, G.L., Genoux, P.F., 1983a. Collapse of a cavitating vortex ring. Journal of Fluids Engineering, 105(4):400-405.
[2]Chahine, G.L., Genoux, P.F., 1983b. Static and dynamic quilibrium of a vaporous vortex-ring. Journal de Mecanique Theorique et Appliquee, 2(5):829-857 (in French).
[3]Chahine, G.L., Johnson, V.E., Lindenmuth, W.T., et al., 1985. The use of self-resonating cavitating water jets for underwater sound generation. The Journal of the Acoustical Society of America, 77(1):113-126.
[4]Dziedzic, M., Leutheusser, H.J., 1996. An experimental study of viscous vortex rings. Experiments in Fluids, 21(5):315-324.
[5]Genoux, P.F., Chahine, G.L., 1984. Collapse of a toroidal bubble near a solid wall. ASME Cavitation and Multi-phase Flow Forum, p.69-72.
[6]Hu, L., Shen, Y.N., Chen, W.Y., et al., 2016a. Experimental investigation on submerged gas-liquid mixture injection into water through a micro-channel. International Journal of Multiphase Flow, 83:39-50.
[7]Hu, L., Liu, Q., Chen, W.Y., et al., 2016b. Normalizing study on the characteristic size of the stable cavity induced by a gas-jet penetrating into a liquid sheet. Experimental Thermal and Fluid Science, 70:228-235.
[8]Jiang, L., Ge, H., Feng, C.L., et al., 2015. Numerical simulation of underwater explosion bubble with a refined interface treatment. Science China Physics, Mechanics & Astronomy, 58(4):1-10.
[9]Johnson, V.E.Jr., Chahine, G.L., Lindenmuth, W.T., et al., 1984a. Cavitating and structured jets for mechanical bits to increase drilling rate—part I: theory and concepts. Journal of Energy Resources Technology, 106(2):282-288.
[10]Johnson, V.E.Jr., Chahine, G.L., Lindenmuth, W.T., et al., 1984b. Cavitating and structured jets for mechanical bits to increase drilling rate—part II: experimental results. Journal of Energy Resources Technology, 106(2):289-294.
[11]Lauterborn, W., Kurz, T., 2010. Physics of bubble oscillations. Reports on Progress in Physics, 73(10):106501.
[12]Shariff, K., Leonard, A., 1992. Vortex rings. Annual Review of Fluid Mechanics, 24(1):235-279.
[13]Sullivan, I.S., Niemela, J.J., Hershberger, R.E., et al., 2008. Dynamics of thin vortex rings. Journal of Fluid Mechanics, 609:319-347.
[14]Teslenko, V.S., Drozhzhin, A.P., Medvedev, R.N., 2014. Pulsation of cavitating vortex rings in water. Technical Physics Letters, 40(11):1021-1023.
[15]Walker, J.D.A., Smith, C.R., Doligalski, T.L., et al., 1987. The impact of a vortex ring on a wall. Journal of Fluid Mechanics, 181:99-140.
[16]Wang, Q.X., 2014. Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. Journal of Fluid Mechanics, 745:509-536.
[17]Xu, M., Ji, C., Zou, J., et al., 2014. Particle removal by a single cavitation bubble. Science China Physics, Mechanics and Astronomy, 57(4):668-673.
[18]Xu, Y., Feng, L.H., Wang, J.J., 2013. Experimental investigation of a synthetic jet impinging on a fixed wall. Experiments in Fluids, 54:1512.
Open peer comments: Debate/Discuss/Question/Opinion
<1>