Full Text:   <1504>

CLC number: TU834.6

On-line Access: 2018-01-12

Received: 2017-02-10

Revision Accepted: 2017-12-04

Crosschecked: 2017-12-15

Cited: 1

Clicked: 1086

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Cheng-hang Zheng

https://orcid.org/0000-0003-0410-2007

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.1 P.21-33

http://doi.org/10.1631/jzus.A1700072


Recent advances in dust collection technology and ISO standardization in bag filtration


Author(s):  Cheng-hang Zheng, Chikao Kanaoka

Affiliation(s):  State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-fired Air Pollution Control, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   kanaoka-4215@mail.bbexcite.jp

Key Words:  Dust collection, Electrostatic precipitator (ESP), Bag filters, ISO standards


Cheng-hang Zheng, Chikao Kanaoka. Recent advances in dust collection technology and ISO standardization in bag filtration[J]. Journal of Zhejiang University Science A, 2018, 19(1): 21-33.

@article{title="Recent advances in dust collection technology and ISO standardization in bag filtration",
author="Cheng-hang Zheng, Chikao Kanaoka",
journal="Journal of Zhejiang University Science A",
volume="19",
number="1",
pages="21-33",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1700072"
}

%0 Journal Article
%T Recent advances in dust collection technology and ISO standardization in bag filtration
%A Cheng-hang Zheng
%A Chikao Kanaoka
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 1
%P 21-33
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1700072

TY - JOUR
T1 - Recent advances in dust collection technology and ISO standardization in bag filtration
A1 - Cheng-hang Zheng
A1 - Chikao Kanaoka
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 1
SP - 21
EP - 33
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1700072


Abstract: 
dust collection technology is used not only as a countermeasure for air pollution, but also as removing technology for nano-particles, simultaneous removal of gas and dust, and facilitating the use of equipment in extreme conditions such as high and low pressures and temperatures. Particle concentration in the atmosphere, especially PM2.5, has not decreased despite a reduction in the concentration of dust discharged from stationary sources. This is thought to be because of the formation of secondary particles following the discharge of condensable and/or reactive gaseous materials. Therefore, there needs to be an improvement in dust collection technology. In this paper, recent developments in dust collection technology, especially bag filtration and electrostatic precipitators, are described, and the ISO standards related to bag filtration are summarized. The future prospects for these technologies are outlined. This paper contributes to our understanding of the capture of particulate matter, which will support the improvement of particle removal technologies and the development of future applications.

除尘技术研究进展和袋式除尘ISO标准

目的:分析当前最新的针对烟气中颗粒物的高效脱除技术,包括静电除尘和袋式除尘的提效方法、原理以及所能达到的效果等;对研究现状进行评述和对未来发展做出展望,并介绍袋式除尘的相关ISO标准.
创新点:1. 总结了各参数对静电除尘器(包括低低温静电除尘、高温静电除尘和湿式静电除尘等)除尘效率的影响;2. 分析比较了不同结构形式的滤袋并总结了适应更高过滤要求的新型过滤材料.
方法:1. 通过数据分析,比较不同粒径、比电阻和温度对静电除尘器除尘效率的影响,并提出相关改进措施;2. 比较不同形式滤袋的收尘特点,结合ISO标准和当前工业需求,对袋式除尘进行展望.
结论:1. 为保证除尘效率,对于不同特性的粉尘,可采取不同形式的静电除尘器增效技术;2. 为满足更高的过滤要求,在袋式除尘器方面,急需开发新型过滤材料和优化清灰技术,以适应更高的温度和满足更高的清灰要求.

关键词:除尘;静电除尘器;滤袋;ISO标准

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]APPIE (Association of Powder Processing Industry and Engineering), 1997. Shuujin no Gijutsu to Souchi. Nikkan Kogyo, Japan, p.125 (in Japanese).

[2]Bao L, Kiyotani H, Chaen S, et al., 2015. Investigation of HEPA filter media for energy saving. 32nd Annual Meeting on Air Cleaning and Contamination Control, p.125-126 (in Japanese).

[3]Beltran MR, 2008. Wet ESP for the collection of submicron particles mist and air toxics. 11th International Conference on Electrostatic Precipitation.

[4]Bologa A, Paur HR, Seifert H, et al., 2009. Novel wet electrostatic precipitator for collection of fine aerosol. Journal of Electrostatics, 67(2-3):150-153.

[5]Brown D, Gassner M, Fuchino T, et al., 2009. Thermo economic analysis for the optimal conceptual design of biomass gasification energy conversion systems. Applied Thermal Engineering, 29(11-12):2137-2152.

[6]Brown RF, Walker AB, 1971. Feasibility demonstration of electrostatic precipitation at 1700 F. Journal of the Air Pollution Control Association, 21(10):617-620.

[7]Bush JR, Feldman PL, Robinson M, 1979. High-temperature, high-pressure electrostatic precipitation. Journal of the Air Pollution Control Association, 29(4):365-371.

[8]Caputo AC, Pelagagge PM, 1999. Cost-effectiveness analysis of waste gas treatment plants for the glass industry. Journal of the Air & Waste Management Association, 49(12):1456-1462.

[9]Chang J, Dong Y, Wang Z, et al., 2011. Removal of sulfuric acid aerosol in a wet electrostatic precipitator with single terylene or polypropylene collection electrodes. Journal of Aerosol Science, 42(8):544-554.

[10]Darcovich K, Jonasson KA, Capes CE, 1997. Developments in the control of fine particulate air emissions. Advanced Powder Technology, 8(3):179-215.

[11]Dennis R, Klemm HA, 1979a. Fabric Filter Model Format Change. Vol. I. Detailed Technical Report; Vol. II. User’s Guide. Report No. EPA/600/7-79/043a-b, Environmental Protection Agency, USA.

[12]Dennis R, Klemm HA, 1979b. A model for coal fly ash filtration. Journal of the Air Pollution Control Association, 29(3):230-234.

[13]Dey L, Venkataraman C, 2012. A wet electrostatic precipitator (WESP) for soft nanoparticle collection. Aerosol Science and Technology, 46(7):750-759.

[14]Fujishima H, Nagata C, 2004. Experiences of wet type electrostatic precipitator successfully applied for SO3 removal in boilers using high sulfur content fuel. Ninth International Conference on Electrostatic Precipitation.

[15]Fulyful FK, 2008. High temperature-high pressure effect on performance of an electrostatic precipitator. Journal of Kerbala University, 6(2):84-92.

[16]ISO (International Organization for Standardization), 2011. Air Quality–Test Method for Filtration Characterization of Cleanable Filter Media, ISO 11057. ISO.

[17]ISO (International Organization for Standardization), 2016. Test Methods for Evaluating Degradation of Characteristics of Cleanable Filter Media, ISO 16891. ISO.

[18]JEMAI (Japan Environmental Management Association for Industry), 2017. Shin Kogaiboushi no Gijutu to Houki. Taikihen, Maruzen, Japan, p.298 (in Japanese).

[19]Jeong SH, Shim SH, Song DK, et al., 2013. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist and fine particulates. Polish Journal of Environmental Studies, 22(2):409-415.

[20]JSIMM (Japan Society of Industrial Machinery Manufacturers), 2008. Study on the Extraction of Subjects Necessary for Bag Filter System for Environmental Protection Use. JSIMM Report.

[21]Kanaoka C, Makino H, 2013a. Hajimete no Shuujin Gijutsu. Nikkan Kogyo, Japan, p.75 (in Japanese).

[22]Kanaoka C, Makino H, 2013b. Hajimete no Shuujin Gijutsu. Nikkan Kogyo, Japan, p.79-85 (in Japanese).

[23]Kanaoka C, Makino H, 2013c. Hajimete no Shuujin Gijutsu. Nikkan Kogyo, Japan, p.139 (in Japanese).

[24]Kanaoka C, Bao LM, 2016. Packing density distribution of fiber in a nonwoven filter media. Preprint of the 33rd Annual Meeting on Air Cleaning and Contamination Control, p.96-99 (in Japanese).

[25]Kim HJ, Han B, Woo CG, et al., 2014. Performance evaluation of dry and wet electrostatic precipitators used in an oxygen-pulverized coal combustion and a CO2 capture and storage pilot plant. Journal of Aerosol Science, 77: 116-126.

[26]Kim SC, Harrington MS, Pui DYH, 2007. Experimental study of nanoparticles penetration through commercial filter media. Nanotechnology and Occupational Health, 2006: 117-125.

[27]Kim SC, Wang J, Emery MS, et al., 2009. Structural property effect of nanoparticle agglomerates on particle penetration through fibrous filter. Aerosol Science and Technology, 43(4):344-355.

[28]Kishima T, Wada Y, Iio Y, et al., 2016. Reduction of consumption amount of chemicals used in a bag filter system for hazardous gas (HCl) removal in a municipal waste incineration gas. Preprint of the 27th Annual Meeting of Japan Society of Material Cycles and Waste Management, p.361-362 (in Japanese).

[29]Leibold H, Hornung A, Seifert H, 2008. HTHP syngas cleaning concept of two stage biomass gasification for FT synthesis. Powder Technology, 180(1-2):265-270.

[30]Lin GY, Tsai CJ, Chen SC, et al., 2010. An efficient single-stage wet electrostatic precipitator for fine and nanosized particle control. Aerosol Science and Technology, 44(1):38-45.

[31]Makino H, 2015. Development tendency and future prospect of dust collection technology for environmental protection. Funtai Gijutsu, 7:105-112 (in Japanese).

[32]Makino H, Ito S, 1987. Emission control of sub-micron particles in pulverized coal combustion flue gas. Kagaku Kogaku, 51:523-526 (in Japanese).

[33]Makino H, Sato M, Ninomiya T, 1983. Evaluation of Collection Characteristics of Electrostatic Precipitore from Coal and Coal Ash Properties. CRIEPI Research Report No. 283023, Central Research Institute of Electric Power Industry, Japan (in Japanese).

[34]Mizuno A, 2000. Electrostatic precipitation. IEEE Transactions on Dielectrics and Electrical Insulation, 7(5):615-624.

[35]Nemoto J, Soyama T, Saito T, et al., 2016. Preparation of nanocellulose containing air filter media. 33rd Annual Meeting on Air Cleaning and Contamination Control, p.117-118 (in Japanese).

[36]Pan D, Yang L, Wu H, et al., 2017. Removal characteristics of sulfuric acid aerosols from coal-fired power plants. Journal of the Air & Waste Management Association, 67(3):352-357.

[37]Parker KR, 1997. Applied Electrostatic Precipitation. Blackie Academic & Professional, London, UK.

[38]Prabhansu, Karmakar MK, Chandra P, et al., 2015. A review on the fuel gas cleaning technologies in gasification process. Journal of Environmental Chemical Engineering, 3(2):689-702.

[39]Saiyasitpanich P, Keener TC, Lu M, et al., 2006. Collection of ultrafine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators. Environmental Science & Technology, 40(24):7890-7895.

[40]Sasakura S, Hamada N, Kishima T, 2014. New pulse jet bag filter: ECO pulser. Nihon Spindle Technical Report, 54:5 (in Japanese).

[41]SCEJ (Society of Chemical Engineers, Japan), 1988. Chemical Engineering Handbook, 5th Edition. Maruzen, Japan, p.793 (in Japanese).

[42]Smid J, Peng CY, Lee HT, et al., 2004. Hot gas granular moving bed filters for advanced power systems. Filtration & Separation, 41(10):32-35.

[43]Villot A, Gonthier Y, Gonze E, et al., 2012. Separation of particles from syngas at high-temperatures with an electrostatic precipitator. Separation and Purification Technology, 92:181-190.

[44]Wang J, Kim SC, Pui DYH, 2008. Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. Journal of Aerosol Science, 39(4):323-334.

[45]Wang J, Kim SC, Pui DYH, 2011. Measurement of multi-wall carbon nanotube penetration through a screen filter and single-fiber analysis. Journal of Nanoparticle Research, 13(10):4565-4573.

[46]Wang X, You C, 2013. Effects of thermophoresis, vapor, and water film on particle removal of electrostatic precipitator. Journal of Aerosol Science, 63:1-9.

[47]Watanabe M, Nagayama T, Matsuda H, et al., 1979. Collection Efficiency of High Temperature Electrostatic Precipitation for Oil Burning Boiler (Part II). CRIEPI Research Report No. 279004, Central Research Institute of Electric Power Industry, Japan (in Japanese).

[48]Xu X, Gao X, Yan P, et al., 2015. Particle migration and collection in a high-temperature electrostatic precipitator. Separation and Purification Technology, 143:184-191.

[49]Xu X, Zheng C, Yan P, et al., 2016. Effect of electrode configuration on particle collection in a high-temperature electrostatic precipitator. Separation and Purification Technology, 166:157-163.

[50]Yan P, Zheng C, Xiao G, et al., 2015. Characteristics of negative DC corona discharge in a wire-plate configuration at high temperatures. Separation and Purification Technology, 139:5-13.

[51]Yang Z, Zheng C, Chang Q, et al., 2017. Fine particle migration and collection in a wet electrostatic precipitator. Journal of the Air & Waste Management Association, 67(4):498-506.

[52]Yoneda T, 2001. Dust collection technologies by fabric filters. Journal of the Society of Powder Technology, Japan, 38(6):436-445 (in Japanese).

[53]Yoneda T, Hirai S, 1997. Exhaust gas treatment system using bag filters and dioxins reduction technology. Journal of the Japan Institute of Energy, 76:963-970 (in Japanese).

[54]You C, Wang X, Liu R, et al., 2010. Simultaneous effects of electrostatic field and thermophoresis on inhalable particulate matter removal. Powder Technology, 202(1-3):95-100.

[55]Yun KM, Hogan CJ, Matsubayashi Y, et al., 2007. Nanoparticle filtration by electrospun polymer fiber. Chemical Engineering Science, 62(17):4751-4759.

[56]Zhang Y, Yang J, Yu X, et al., 2017. Migration and emission characteristics of Hg in coal-fired power plant of China with ultra low emission air pollution control devices. Fuel Processing Technology, 158:272-280.

[57]Zheng C, Shen Z, Chang Q, et al., 2017a. Experimental study on electrostatic precipitation of low-resistivity high-carbon fly ash at high temperature. Energy & Fuels, 31(6):6266-6273.

[58]Zheng C, Shen Z, Yan P, et al., 2017b. Particle removal enhancement in a high-temperature electrostatic precipitator for glass furnace. Powder Technology, 319:154-162.

[59]Zheng C, Wang L, Zhang Y, et al., 2017c. Partitioning of hazardous trace elements among air pollution control devices in ultra-low-emission coal-fired power plants. Energy & Fuels, 31(6):6334-6344.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE