Full Text:   <466>

Summary:  <198>

CLC number: O59; TN710

On-line Access: 2018-12-03

Received: 2018-05-28

Revision Accepted: 2018-06-08

Crosschecked: 2018-06-13

Cited: 0

Clicked: 827

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fu-qiang Wu

https://orcid.org/0000-0002-3850-7400

Jun Ma

https://orcid.org/0000-0002-6127-000X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2018 Vol.19 No.12 P.889-903

http://doi.org/10.1631/jzus.A1800334


Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation


Author(s):  Fu-qiang Wu, Jun Ma, Guo-dong Ren

Affiliation(s):  Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China; more

Corresponding email(s):   hyperchaos@163.com

Key Words:  Synchronization, Bifurcation, Synchronization factor, Field programmable gate array (FPGA)


Share this article to: More |Next Article >>>

Fu-qiang Wu, Jun Ma, Guo-dong Ren. Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation[J]. Journal of Zhejiang University Science A, 2018, 19(12): 889-903.

@article{title="Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation",
author="Fu-qiang Wu, Jun Ma, Guo-dong Ren",
journal="Journal of Zhejiang University Science A",
volume="19",
number="12",
pages="889-903",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1800334"
}

%0 Journal Article
%T Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation
%A Fu-qiang Wu
%A Jun Ma
%A Guo-dong Ren
%J Journal of Zhejiang University SCIENCE A
%V 19
%N 12
%P 889-903
%@ 1673-565X
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1800334

TY - JOUR
T1 - Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation
A1 - Fu-qiang Wu
A1 - Jun Ma
A1 - Guo-dong Ren
J0 - Journal of Zhejiang University Science A
VL - 19
IS - 12
SP - 889
EP - 903
%@ 1673-565X
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1800334


Abstract: 
The selection of periodical or chaotic attractors becomes initial-dependent in that setting different initial values can trigger a different profile of attractors in a dynamical system with memory by adding a nonlinear term such as z2y in the Rössler system. The memory effect means that the outputs are very dependent on the initial value for variable z, e.g. magnetic flux for a memristor. In this study, standard nonlinear analyses, including phase portrait, bifurcation analysis, and Lyapunov exponent analysis were carried out. synchronization between two coupled oscillators and a network was investigated by resetting initial states. A statistical synchronization factor was calculated to find the dependence of synchronization on the coupling intensity when different initial values were selected. Our results show that the dynamics of the attractor depends on the selection of the initial value for one variable z. In the case of coupling between two oscillators, appropriate initial values are selected to trigger two different nonlinear oscillators (periodical and chaotic). Results show that complete synchronization between periodical oscillators, chaotic oscillators, and periodical and chaotic oscillators can be realized by applying an appropriate unidirectional coupling intensity. In particular, two periodical oscillators can be coupled bidirectionally to reach chaotic synchronization so that periodical oscillation is modulated to become chaotic. When the memory effect is considered on some nodes of a chain network, enhancement of memory function can decrease the synchronization, while a small region for intensity of memory function can contribute to the synchronization of the network. Finally, dependence of attractor formation on the initial setting was verified on the field programmable gate array (FPGA) circuit in digital signal processing (DSP) builder block under Matlab/Simulink.

By including a nonlinear term into the Rössler model, authors investigated periodical and chaotic attractors in an initial-dependent oscillator. Bifurcation analysis and largest Lyapunov exponent spectrum were presented. Synchronization between two coupled oscillators was studied. In addition, the collective behaviors and dynamics were discussed in the chain network. It is interesting that an FPGA circuit implemented by using DSP builder blocks. This manuscript fits well with the scope of the journal. Authors' results contribute to the field of chaos and chaos synchronization.

初始值敏感的周期和混沌振荡模态系统同步稳定性

目的:具有记忆特性的振子系统的模态选择对初始值具有敏感性. 本文旨在探讨初始值控制的振子的耦合同步稳定一致性问题.
创新点:1. 两个周期振子耦合后达到混沌同步; 2. 周期振子和混沌振子耦合后达到周期性振荡同步.
方法:1. 通过分岔分析,研究振荡模态和初始值选择之间的关系(图2、6和8); 2. 通过数值计算,研究两个周期振子在耦合下的混沌同步关系(图7); 3. 通过计算同步因子和斑图,分析同步一致性对耦合强度与记忆函数增益的依赖程度(图9和10); 4. 通过现场可编程门阵列验证动力系统模态对初始值的依赖程度(图11和12).
结论:1. 具有记忆函数的非线性振子的动力学行为(如吸引子)在参数固定的情况下与初始值选取有关. 2. 不同类型振子的耦合可以达到多样同步行为; 周期振子耦合达到混沌同步;周期振子耦合混沌振子可以抑制混沌. 3. 包含记忆函数的振子网络耦合同步非常困难.

关键词:同步;分岔;同步因子;现场可编程门阵列

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Anshan H, 1988. A study of the chaotic phenomena in Chua’s circuit. IEEE International Symposium on Circuits and Systems, p.273-276.

[2]Carroll TL, Pecora LM, 1993. Synchronizing nonautonomous chaotic circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(10):646-650.

[3]Chen S, Wang D, Li C, et al., 2004. Synchronizing strict-feedback chaotic system via a scalar driving signal. Chaos, 14(3):539-544.

[4]Cheng AL, Chen YY, 2017. Analyzing the synchronization of Rössler systems—when trigger-and-reinject is equally important as the spiral motio. Physics Letters A, 381(42):3641-3651.

[5]de la Fraga LG, Tlelo-Cuautle E, 2014. Optimizing the maximum Lyapunov exponent and phase space portraits in multi-scroll chaotic oscillators. Nonlinear Dynamics, 76(2):1503-1515.

[6]Fixman M, 1984. Absorption by static traps: initial-value and steady-state problems. Journal of Chemical Physics, 81(8):3666-3677.

[7]Friedman D, Strowbridge BW, 2003. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb. Neurophysiology, 89(5):2601-2610.

[8]Giordano R, Aloisio A, 2011. Fixed-latency, multi-gigabit serial links with Xilinx FPGAs. IEEE Transactions on Nuclear Science, 58(1):194-201.

[9]Graubard K, Hartline DK, 1987. Full-wave rectification from a mixed electrical-chemical synapse. Science, 237(4814):535-537.

[10]Györgyi L, Field RJ, 1992. A three-variable model of deterministic chaos in the Belousov-Zhabotinsky reaction. Nature, 355(6363):808-810.

[11]Heagy JF, Carroll TL, Pecora LM, 1995. Desynchronization by periodic orbits. Physical Review E, 52(2):R1253-R1256.

[12]Honein T, Chien N, Herrmann G, 1991. On conservation laws for dissipative systems. Physics Letters A, 155(4-5):223-224.

[13]Hu G, Xiao J, Yang J, et al., 1997. Synchronization of spatiotemporal chaos and its applications. Physical Review E, 56(3):2738-2746.

[14]Hunt BR, Ott E, Yorke JA, 1997. Differentiable generalized synchronization of chaos. Physical Review E, 55(44):4029-4034.

[15]Jin W, Lin Q, Wang A, et al., 2017. Computer simulation of noise effects of the neighborhood of stimulus threshold for a mathematical model of homeostatic regulation of sleep-wake cycles. Complexity, Article No. 4797545.

[16]Lau FCM, Tse CK, 2003. Approximate-optimal detector for chaos communication systems. International Journal of Bifurcation and Chaos, 13(5):1329-1335.

[17]Li C, Chen L, Aihara K, 2008. Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks. Chaos, 18(2):23132.

[18]Lin W, He Y, 2005. Complete synchronization of the noise-perturbed Chua’s circuits. Chaos, 15(2):23705.

[19]Liu X, Ma G, Jiang X, et al., 2016. H stochastic synchronization for master-slave semi-Markovian switching system via sliding mode control. Complexity, 21(6):430-441.

[20]Luo ACJ, Han RPS, 2000. The dynamics of stochastic and resonant layers in a periodically driven pendulum. Chaos Solitons & Fractals, 11(14):2349-2359.

[21]Luo ACJ, Min F, 2011. Synchronization dynamics of two different dynamical systems. Chaos Solitons & Fractals, 44(6):362-380.

[22]Lv M, Wang C, Ren G, et al., 2016. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3):1479-1490.

[23]Ma J, Li F, Huang L, et al., 2011. Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Communications in Nonlinear Science and Numerical Simulation, 16(9):3770-3785.

[24]Ma J, Wu F, Ren G, et al., 2017a. A class of initials-dependent dynamical systems. Applied Mathematics and Computation, 298:65-76.

[25]Ma J, Mi L, Zhou P, et al., 2017b. Phase synchronization between two neurons induced by coupling of electromagnetic field. Applied Mathematics and Computation, 307:321-328.

[26]Ma J, Wu F, Wang C, 2017c. Synchronization behaviors of coupled neurons under electromagnetic radiation. International Journal of Modern Physics B, 31(2):1650251.

[27]Mahmoud GM, Mahmoud EE, 2010. Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dynamics, 62(4):875-882.

[28]Mankin R, Laas K, Laas T, et al., 2018. Memory effects for a stochastic fractional oscillator in a magnetic field. Physical Review E, 97(1):12145.

[29]Martinet B, Adrian RJ, 1988. Rayleigh-Benard convection: experimental study of time-dependent instabilities. Experiments in Fluids, 6(5):316-322.

[30]Osipov GV, Pikovsky AS, Kurths J, 2002. Phase synchronization of chaotic rotators. Physical Review Letters, 88(4):54102.

[31]Pano-Azucena AD, Rangel-Magdaleno JJ, Tlelo-Cuautle E, et al., 2017. Arduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dynamics, 87(4):2203-2217.

[32]Pecora LM, Carroll TL, 2015. Synchronization of chaotic systems. Chaos, 25(9):97611.

[33]Pena Ramirez J, Fey RHB, Nijmeijer H, 2013. Synchronization of weakly nonlinear oscillators with Huygens’ coupling. Chaos, 23(3):33118.

[34]Peng JH, Ding EJ, Ding M, et al., 1996. Synchronizing hyperchaos with a scalar transmitted signal. Physical Review Letters, 76(6):904-907.

[35]Pereda AE, 2014. Electrical synapses and their functional interactions with chemical synapses. Nature Reviews Neuroscience, 15:250-263.

[36]Podvigin NF, Bagaeva TV, Podvigina DN, et al., 2008. Selective self-synchronization of impulse flows in neuronal networks of the visual system. Biophysics, 53(2):177-181.

[37]Rössler OE, 1976. An equation for continuous chaos. Physics Letters A, 57(5):397-398.

[38]Ruggieri M, Speciale MP, 2017. On the construction of conservation laws: a mixed approach. Journal of Mathematical Physics, 58(2):23510.

[39]Sieberer LM, Huber SD, Altman E, et al., 2013. Dynamical critical phenomena in driven-dissipative systems. Physical Review Letters, 110(19):195301.

[40]Szot P, 2012. Common factors among Alzheimer’s disease, Parkinson’s disease, and epilepsy: possible role of the noradrenergic nervous system. Epilepsia, 53(S1):61-66.

[41]Tang YX, Khalaf AJM, Rajagopal K, et al., 2018. A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors. Chinese Physics B, 27(4):40502.

[42]Tlelo-Cuautle E, Carbajal-Gomez VH, Obeso-Rodelo PJ, et al., 2015a. FPGA realization of a chaotic communication system applied to image processing. Nonlinear Dynamics, 82(4):1879-1892.

[43]Tlelo-Cuautle E, Rangel-Magdaleno JJ, Pano-Azucena AD, et al., 2015b. FPGA realization of multi-scroll chaotic oscillators. Communications in Nonlinear Science and Numerical Simulation, 27(1-3):66-80.

[44]Tlelo-Cuautle E, Rangel-Magdaleno J, de la Fraga LG, 2016a. Engineering Applications of FPGAs: Chaotic Systems, Artificial Neural Networks, Random Number Generators, and Secure Communication Systems. Springer, Cham, Switzerland.

[45]Tlelo-Cuautle E, Pano-Azucena AD, Rangel-Magdaleno JJ, et al., 2016b. Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dynamics, 85(4):2143-2157.

[46]Tlelo-Cuautle E, de Jesus Quintas-Valles A, de la Fraga LG, et al., 2016c. VHDL descriptions for the FPGA implementation of PWL-function-based multi-scroll chaotic oscillators. PLoS ONE, 11(2):e0168300.

[47]Tlelo-Cuautle E, de la Fraga LG, Pham VT, et al., 2017. Dynamics, FPGA realization and application of a chaotic system with an infinite number of equilibrium points. Nonlinear Dynamics, 89(2):1129-1139.

[48]Trejo-Guerra R, Tlelo-Cuautle E, Jiménez-Fuentes JM, et al., 2012. Integrated circuit generating 3- and 5-scroll attractors. Communications in Nonlinear Science and Numerical Simulation, 17(11):4328-4335.

[49]Trejo-Guerra R, Tlelo-Cuautle E, Carbajal-Gomez VH, et al., 2013. A survey on the integrated design of chaotic oscillators. Applied Mathematics and Computation, 219(10):5113-5122.

[50]Ueda Y, Akamatsu N, 1981. Chaotically transitional phenomena in the forced negative-resistance oscillator. IEEE Transactions on Circuits and Systems, 28(3):217-224.

[51]Vaidyanathan S, Volos C, 2016. Advances and Applications in Chaotic Systems. Springer, Cham, Switzerland.

[52]Vyas S, Huang H, Gale JT, et al., 2016. Neuronal complexity in subthalamic nucleus is reduced in Parkinson’s disease. IEEE Transactions Neurology System Rehabilitation Engineering, 24(1):36-45.

[53]Wang C, Ma J, 2018. A review and guidance for pattern selection in spatiotemporal system. International Journal of Modern Physics B, 32(6):1830003.

[54]Wang G, Jin W, Liu H, et al., 2018. The synchronization of asymmetric-structured electric coupling neuronal system. International Journal of Modern Physics B, 32(4):1850040.

[55]Wang H, Wang Q, Lu Q, 2011. Bursting oscillations, bifurcation and synchronization in neuronal systems. Chaos Solitons & Fractals, 44(8):667-675.

[56]Wang Y, Ma J, Xu Y, et al., 2017. The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. International Journal of Bifurcation and Chaos, 27(2):1750030.

[57]Wu F, Wang C, Xu Y, et al., 2016. Model of electrical activity in cardiac tissue under electromagnetic induction. Science Reports, 6(1):28.

[58]Wu F, Wang C, Jin W, et al., 2017. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A: Statistical Mechanics and Its Applications, 469:81-88.

[59]Xu Y, Ying H, Jia Y, et al., 2017. Autaptic regulation of electrical activities in neuron under electromagnetic induction. Science Reports, 7:43452.

[60]Yamada T, Fujisaka H, 1986. Intermittency caused by chaotic modulation. I: Analysis with a multiplicative noise model. Progress of Theoretical Physics, 76(3):582-591.

[61]Yang SS, Duan CK, 1998. Generalized synchronization in chaotic systems. Chaos Solitons & Fractals, 9(10):1703-1707.

[62]Yang T, Yang LB, Yang CM, 1997. Impulsive control of Lorenz system. Physica D: Nonlinear Phenomena, 110(1-2):18-24.

[63]Zhang XH, Liu SQ, 2018. Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction. Chinese Physics B, 27(4):40501.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE