Full Text:   <137>

Summary:  <73>

CLC number: V43

On-line Access: 2019-05-06

Received: 2018-11-02

Revision Accepted: 2019-03-27

Crosschecked: 2019-04-03

Cited: 0

Clicked: 328

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xun Wen

https://orcid.org/0000-0002-7629-5576

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.5 P.347-357

10.1631/jzus.A1800620


Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles


Author(s):  Xun Wen, Jun Liu, Jie Li, Feng Ding, Zhi-xun Xia

Affiliation(s):  College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   xwentst@163.com, xiazhixun@sina.com

Key Words:  Aerodynamic configuration design, Novel inlet cover, Aerodynamic force, Heat evaluation


Xun Wen, Jun Liu, Jie Li, Feng Ding, Zhi-xun Xia. Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles[J]. Journal of Zhejiang University Science A, 2019, 20(3): 347-357.

@article{title="Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles",
author="Xun Wen, Jun Liu, Jie Li, Feng Ding, Zhi-xun Xia",
journal="Journal of Zhejiang University Science A",
volume="20",
number="5",
pages="347-357",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1800620"
}

%0 Journal Article
%T Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles
%A Xun Wen
%A Jun Liu
%A Jie Li
%A Feng Ding
%A Zhi-xun Xia
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 5
%P 347-357
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer

TY - JOUR
T1 - Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles
A1 - Xun Wen
A1 - Jun Liu
A1 - Jie Li
A1 - Feng Ding
A1 - Zhi-xun Xia
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 5
SP - 347
EP - 357
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -


Abstract: 
An efficient clamshell-shaped inlet cover configuration based on a shockwave interference methodology is proposed, which has the advantage of an autonomous opening using the aerodynamic force and moment. A preliminary design method for the inlet cover is introduced and used to produce cover models of two different lengths, with contributions similar to those of cowlings, rocket fairings, shrouds, or false ogives. The clamshell-shaped inlet cover features a practical design with a wide range of applications, including utilization in air-breathing hypersonic vehicles under specific constraints. In this investigation, aerodynamic numerical simulations were conducted to evaluate the extent to which the objectives and design principles are achieved for two typical ballistic separation states. The results show that both configurations can prevent an excessive accumulation of shockwaves in the nose cone area. In addition, the inlet cover generates negative lift, which results in the generation of an opening moment. The calculated heat flux at the leading edge of the clamshell-shaped inlet cover is approximately 13 MW/m2, which is within the limit of the composite material but slightly higher than that of the stagnation point of the nose cone.

In this paper, a novel clamshell-shaped inlet cover of two profiles were developed for air-breathing hypersonic vehicles under specific constraints. To validate the inlet cover system's reliability, numerical simulation was performed using commercial software ANSYS Fluent.

适用于吸气式高速飞行器的蚌式进气道堵盖气动设计及数值模拟研究

目的:吸气式高速飞行器在助推阶段需要对进气道采取保护措施,而应用传统的圆锥体载荷式整流罩存在体积大、质量重等缺陷.为避免载荷罩的空间雍余,基于激波干扰理论,本文旨在提出一种通用型可实现气动自分离的整流罩设计方法,并探讨设计的两组构型在两个弹道特殊状态点的气动力和气动热特性,以及研究构型的适用性和基本气动性能.
创新点:1. 通过激波干扰理论模型方程,推导出环境变量与构型基本尺寸之间的关系; 2. 建立气动设计模型,成功求得助推阶段和整流罩分离状态点的气动特性; 3. 新构型减轻了整流罩系统重量,实现了自分离,简化了机械结构系统.
方法:1. 通过理论推导,得到飞行器头锥长度和进气口尺寸变化对整流罩构型设计的影响; 2. 通过数值计算,得到异形整流罩及头锥附近流场分布受设计型面的影响以及产生的适应性气动力.
结论:1. 整流罩在分离状态可产生负升力,有自动打开的趋势; 2. 减小整流罩的设计长度有利于气动减阻和降低峰值热流; 3. 整流罩前缘的极限热流约为13 MW/m2,在所选复合材料的受热范围内.

关键词:气动外形设计;新型进气道堵盖;气动力分析;气动热评估

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Blades EL, Newman III JC, 2013. Computational-fluid-dynamics-based design optimization of a large asymmetric payload fairing. Journal of Spacecraft and Rockets, 50(5):1013-1023.

[2]Brauckmann GJ, Streett C, Kleb WL, et al., 2015. Computational and experimental unsteady pressures for alternate SLS booster nose shapes. Proceedings of the 53rd AIAA Aerospace Sciences Meeting.

[3]Colonno MR, Alonso JJ, 2008. The optimum launch vehicle fairing: an MDO approach. Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.

[4]Ding F, Shen CB, Liu J, et al., 2015. Influence of surface pressure distribution of basic flow field on shape and performance of waverider. Acta Astronautica, 108:62-78.

[5]Groves CE, Ilie M, Schallhorn PA, 2014. Computational fluid dynamics uncertainty analysis for payload fairing spacecraft environmental control systems. Proceedings of the 52nd Aerospace Sciences Meeting.

[6]Higgins JE, Biskner A, Sanford G, 2008. Design, fabrication, and testing of the minotaur IV large fairing. Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-deterministic Approaches Conference, 9th AIAA Gossamer Spacecraft Forum, 4th AIAA Multidisciplinary Design Optimization Specialists Conference.

[7]Hong CQ, Han JC, Zhang XH, et al., 2013. Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8):599-602.

[8]Kosareo DN, Oliver ST, Bednarcyk BA, et al., 2014. Buckling design and analysis of a payload fairing 1/6th cylindrical arc-segment panel. Proceedings of the 55th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.

[9]Li SB, Wang ZG, Huang W, et al., 2016. Effect of the injector configuration for opposing jet on the drag and heat reduction. Aerospace Science and Technology, 51:78-86.

[10]Liao L, Yan L, Huang W, et al., 2018. Mode transition process in a typical strut-based scramjet combustor based on a parametric study. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(6):431-451.

[11]Liu Z, Liu J, Ding F, et al., 2017. Effect of thermochemical non-equilibrium on the aerodynamics of an osculating-cone waverider under different angles of attack. Acta Astronautica, 139:288-295.

[12]Lockwood MK, Petley DH, Martin JG, et al., 1999. Airbreathing hypersonic vehicle design and analysis methods and interactions. Progress in Aerospace Sciences, 35(1):1-32.

[13]Lv Z, Xia ZX, Liu B, et al., 2017. Preliminary experimental study on solid-fuel rocket scramjet combustor. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(2):106-112.

[14]McClinton CR, Rausch VL, Shaw RJ, et al., 2005. Hyper-X: foundation for future hypersonic launch vehicles. Acta Astronautica, 57(2-8):614-622.

[15]Morshed MMM, Hansen CH, Zander AC, 2013. Prediction of acoustic loads on a launch vehicle fairing during liftoff. Journal of Spacecraft and Rockets, 50(1):159-168.

[16]Murman SM, Diosady LT, 2016. Simulation of a hammerhead payload fairing in the transonic regime. Proceedings of the 54th AIAA Aerospace Sciences Meeting.

[17]Sziroczak D, Smith H, 2016. A review of design issues specific to hypersonic flight vehicles. Progress in Aerospace Sciences, 84:1-28.

[18]Wang L, Zhu GX, Guan CQ, et al., 2016. Experimental investigation of dynamic separation for an inlet cover in Mach 6.0 flow. Proceedings of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference.

[19]Yang XX, Zhou Z, Peng K, 2014. Aerodynamic shape design optimization of fairing based on kriging method. Journal of Solid Rocket Technology, 37(2):167-171 (in Chinese).

[20]Zhang XM, Yang SL, Li P, 2017. Numerical simulations of the inlet cover opening process. Journal of Solid Rocket Technology, 40(3):307-312 (in Chinese).

[21]Zhao R, Rong JL, Li YJ, et al., 2017. An investigation of fluctuating pressure environment around rocket fairing with different curvetypes. Acta Armamentarii, 38(5):1020-1026 (in Chinese).

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276/87952783; E-mail: jzus@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE