CLC number: V25
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-06-06
Cited: 0
Clicked: 3522
Citations: Bibtex RefMan EndNote GB/T7714
Bin-lin Ma, Yu Feng, Yu-ting He, Teng Zhang, Sheng Zhang, Tian-yu Zhang. Effect of hygrothermal environment on the tension–tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates[J]. Journal of Zhejiang University Science A, 2019, 20(7): 499-514.
@article{title="Effect of hygrothermal environment on the tension–tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates",
author="Bin-lin Ma, Yu Feng, Yu-ting He, Teng Zhang, Sheng Zhang, Tian-yu Zhang",
journal="Journal of Zhejiang University Science A",
volume="20",
number="7",
pages="499-514",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900081"
}
%0 Journal Article
%T Effect of hygrothermal environment on the tension–tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates
%A Bin-lin Ma
%A Yu Feng
%A Yu-ting He
%A Teng Zhang
%A Sheng Zhang
%A Tian-yu Zhang
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 7
%P 499-514
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900081
TY - JOUR
T1 - Effect of hygrothermal environment on the tension–tension fatigue performance and reliable fatigue life of T700/MTM46 composite laminates
A1 - Bin-lin Ma
A1 - Yu Feng
A1 - Yu-ting He
A1 - Teng Zhang
A1 - Sheng Zhang
A1 - Tian-yu Zhang
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 7
SP - 499
EP - 514
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900081
Abstract: The tension–tension fatigue performance of T700/MTM46 composite laminates after hygrothermal aging was investigated and compared with those of virgin T700/MTM46 laminates. The most significant failure mode of the moisture-saturated fatigue specimens is still severe delamination, and the stiffness degradation of moisture-saturated fatigue specimens can be divided into two distinct stages. However, the hygrothermal conditions will aggravate the stiffness degradation of the composite laminates during fatigue. damage evolution was studied by the edge view of the specimens. The degree of damage of the saturated specimens is more serious than that of the virgin specimens at the same percentage of fatigue life during the fatigue process, especially in the initial stage. The distribution of fatigue life in each stress level was determined. The p-γ;-S-N surfaces were established to predict a reliable fatigue life. The results show that the reliable fatigue life of the moisture-saturated specimens is much lower than that of the virgin specimens under the same conditions. Although the hygrothermal environment does not show a significant effect on the static tensile properties of the T700/MTM46 composite laminates, the fatigue performance is significantly degenerated.
The paper presents an experimental investigation on the hygrothermal effects on the mechanical behaviour of T700/MTM46 composite laminates under tensile static and tension-tension fatigue loading conditions. According to this reviewer, the topic is worth of investigation. The experimental results are very interesting and well-described.
[1]Adda-Bedia EA, Bouazza M, Tounsi A, et al., 2008. Prediction of stiffness degradation in hygrothermal aged [θm/90n]s composite laminates with transverse cracking. Journal of Materials Processing Technology, 199(1-3):199-205.
[2]Amara KH, Tounsi A, Benzair A, 2005. Transverse cracking and elastic properties reduction in hygrothermal aged cross-ply laminates. Materials Science and Engineering: A, 396(1-2):369-375.
[3]Arani AG, Zamani MH, 2018. Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation. Indian Journal of Physics, 92(6):767-777.
[4]ASTM (American Society for Testing and Materials), 2004. Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials, ASTM D5229/D5229M-92(2004). National Standards of USA.
[5]ASTM (American Society for Testing and Materials), 2007. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM D3039/D3039M-07. National Standards of USA.
[6]ASTM (American Society for Testing and Materials), 2012. Standard Test Method for Tension-tension Fatigue of Polymer Matrix Composite Materials, ASTM D3479/ D3479M-2012. National Standards of USA.
[7]Bao LR, Yee AF, 2002. Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer, 43(14):3987-3997.
[8]Bury K, 1999. Statistical Distributions in Engineering. Cambridge University Press, Cambridge, UK.
[9]Caminero MA, García-Moreno I, Rodríguez GP, 2018. Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fibre reinforced epoxy laminates. Polymer Testing, 66:360-370.
[10]Chen CY, 2002. Fatigue and Fracture. Huazhong Science and Technology University Press, Wuhan, China (in Chinese).
[11]Chen YL, Yang XH, Qin HQ, 2002. Study on corrosion damage distribution law of aircraft structure. Materials Science & Engineering, 20(3):378-380 (in Chinese).
[12]Degenhardt R, Kling A, Rohwer K, et al., 2008. Design and analysis of stiffened composite panels including post-buckling and collapse. Computers & Structures, 86(9):919-929.
[13]Degenhardt R, Zimmermann R, Kling A, et al., 2014. New robust design guideline for imperfection sensitive composite launcher structures. Proceedings of the 13th European Conference on Spacecraft Structures.
[14]Duan X, Yao WX, 2002. Multi-directional stiffness degradation induced by matrix cracking in composite laminates. International Journal of Fatigue, 24(2-4):119-125.
[15]Feng Q, Li M, Gu YZ, et al., 2010. Experimental research on hygrothermal properties of carbon fiber/epoxy resin composite under different hygrothermal conditions. Acta Materiae Compositae Sinica, 27(6):16-20 (in Chinese).
[16]Feng Y, He YT, An T, et al., 2015. Effect of hygrothermal condition on buckling and post-buckling performance of CCF300/5228A aero composite stiffened panel under axial compression. Journal of Reinforced Plastics and Composites, 34(12):989-999.
[17]Feng Y, Gao C, He YT, et al., 2016. Investigation on tension– tension fatigue performances and reliability fatigue life of T700/MTM46 composite laminates. Composite Structures, 136:64-74.
[18]Feng Y, He YT, Zhang HY, et al., 2017a. Effect of fatigue loading on impact damage and buckling/post-buckling behaviors of stiffened composite panels under axial compression. Composite Structures, 164:248-262.
[19]Feng Y, He YT, Tan XF, et al., 2017b. Experimental investigation on different positional impact damages and shear-after-impact (SAI) behaviors of stiffened composite panels. Composite Structures, 178:232-245.
[20]Feng Y, He YT, Tan XF, et al., 2017c. Investigation on impact damage evolution under fatigue load and shear-after-impact-fatigue (SAIF) behaviors of stiffened composite panels. International Journal of Fatigue, 100:308-321.
[21]Gao C, He Y, Zhang H, 2013. Performance deregulation rule of aircraft fatigue critical components in consideration of calendar environment. Proceedings of the 13th International Conference on Fracture, p.1-8.
[22]Gao ZT, 1986. Fatigue Applied Statistics. National Defence Industry Press, Beijing, China (in Chinese).
[23]García-Moreno I, Caminero MÁ, Rodriguez GP, et al., 2019a. Effect of thermal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminates. Polymers, 11(1):80.
[24]García-Moreno I, Caminero MÁ, Rodríguez GP, et al., 2019b. Effect of thermal ageing on the impact damage resistance and tolerance of carbon-fibre-reinforced epoxy laminates. Polymers, 11(1):160.
[25]Giancane S, Panella FW, Dattoma V, 2010. Characterization of fatigue damage in long fiber epoxy composite laminates. International Journal of Fatigue, 32(1):46-53.
[26]Gibson RF, 2016. Principles of Composite Material Mechanics. CRC Press, Boca Raton, New York, USA.
[27]Hosoi A, Kawada H, Yoshino H, 2006. Fatigue characteristics of quasi-isotropic CFRP laminates subjected to variable amplitude cyclic two-stage loading. International Journal of Fatigue, 28(10):1284-1289.
[28]Joshi OK, 1983. The effect of moisture on the shear properties of carbon fibre composites. Composites, 14(3):196-200.
[29]Judawisastra H, Ivens J, Verpoest I, 1998. The fatigue behaviour and damage development of 3D woven sandwich composites. Composite Structures, 43(1):35-45.
[30]Karbhari VM, Xian GJ, 2009. Hygrothermal effects on high VF pultruded unidirectional carbon/epoxy composites: moisture uptake. Composites Part B: Engineering, 40(1):41-49.
[31]Khechen A, 2015. Study of Adhesively Bonded Repairs in Aircraft CFRP Primary Structures. MS Thesis, Laval University, Québec, Canada.
[32]Kootsookos A, Mouritz AP, 2004. Seawater durability of glass- and carbon-polymer composites. Composites Science and Technology, 64(10-11):1503-1511.
[33]Mallela UK, Upadhyay A, 2016. Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks. Thin-Walled Structures, 102:158-164.
[34]Manjunatha CM, Taylor AC, Kinloch AJ, et al., 2010. The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite. Composites Science and Technology, 70(1):193-199.
[35]Maria M, 2013. Advanced composite materials of the future in aerospace industry. Incas Bulletin, 5(3):139-150.
[36]Mohaghegh M, 2018. University of Washington/Boeing certificate programs in aircraft structures and composite materials. AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p.2252.
[37]Montesano J, Fawaz Z, Behdinan K, et al., 2012. Fatigue damage in on-axis and off-axis woven-fiber/resin composite. Key Engineering Materials, 488:230-233.
[38]Montesano J, Fawaz Z, Bougherara H, 2013. Characterization of Fatigue Loaded Carbon Fiber Reinforced Polymer Matrix Composites Using Infrared Thermography. Sciences and Techniques Organization-OTAN, Toronto, Canada.
[39]Montesano J, McCleave B, Singh CV, 2018. Prediction of ply crack evolution and stiffness degradation in multidirectional symmetric laminates under multiaxial stress states. Composites Part B: Engineering, 133:53-67.
[40]Patel SR, Case SW, 2000. Durability of a graphite/epoxy woven composite under combined hygrothermal conditions. International Journal of Fatigue, 22(9):809-820.
[41]Peng TS, Liu YM, Saxena A, et al., 2015. In-situ fatigue life prognosis for composite laminates based on stiffness degradation. Composite Structures, 132:155-165.
[42]Philippidis TP, Vassilopoulos AP, 2000. Fatigue design allowables for GRP laminates based on stiffness degradation measurements. Composites Science and Technology, 60(15):2819-2828.
[43]Riccio A, 2015. Damage Growth in Aerospace Composites. Springer, Cham, Switzerland.
[44]Riccio A, di Felice G, Saputo S, et al., 2013. A numerical study on low velocity impact induced damage in stiffened composite panels. Journal of Computational Simulation and Modeling, 3(1):44-47.
[45]Riccio A, Raimondo A, Fragale S, et al., 2014. Delamination buckling and growth phenomena in stiffened composite panels under compression. Part I: an experimental study. Journal of Composite Materials, 48(23):2843-2855.
[46]Sun P, Zhao Y, Luo YF, et al., 2011. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite. Materials & Design, 32(8-9):4341-4347.
[47]Tate JS, Kelkar AD, 2008. Stiffness degradation model for biaxial braided composites under fatigue loading. Composites Part B: Engineering, 39(3):548-555.
[48]Tual N, Carrere N, Davies P, et al., 2015. Characterization of sea water ageing effects on mechanical properties of carbon/epoxy composites for tidal turbine blades. Composites Part A: Applied Science and Manufacturing, 78: 380-389.
[49]van Paepegem W, Degrieck J, 2002. A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites. International Journal of Fatigue, 24(7):747-762.
[50]Yao WX, Himmel N, 1999. Statistical analysis of data from truncated fatigue life and corresponding residual strength experiments for polymer matrix composites. International Journal of Fatigue, 21(6):581-585.
[51]Zafar A, Bertocco F, Schjødt-Thomsen J, et al., 2012. Investigation of the long term effects of moisture on carbon fibre and epoxy matrix composites. Composites Science and Technology, 72(6):656-666.
[52]Zhang LJ, Zhao Y, Luo YF, et al., 2012. On the interfacial properties of CCF300/QY8911 composite with cyclical hygrothermal treatments. Journal of Materials Engineering, (2):25-29 (in Chinese).
[53]Zhao X, Wang X, Wu ZS, et al., 2016. Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads. International Journal of Fatigue, 88: 58-67.
Open peer comments: Debate/Discuss/Question/Opinion
<1>