Full Text:   <365>

Summary:  <153>

CLC number: TE34

On-line Access: 2019-06-04

Received: 2019-06-12

Revision Accepted: 2019-08-18

Crosschecked: 2019-08-22

Cited: 0

Clicked: 1697

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jie Wang

https://orcid.org/0000-0001-8279-741X

Fu-jian Zhou

https://orcid.org/0000-0002-9050-3271

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2019 Vol.20 No.9 P.714-726

http://doi.org/10.1631/jzus.A1900249


Evaluation of the oil/water selective plugging performance of nano-polymer microspheres in fractured carbonate reservoirs


Author(s):  Jie Wang, Fu-jian Zhou, Jun-jian Li, Kai Yang, Lu-feng Zhang, Fan Fan

Affiliation(s):  State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China; more

Corresponding email(s):   zhoufj@cup.edu.cn

Key Words:  Nano-polymer microspheres, Fractured core, Plugging rate, Oil/Water selectivity, Plugging mechanism


Share this article to: More <<< Previous Article|

Jie Wang, Fu-jian Zhou, Jun-jian Li, Kai Yang, Lu-feng Zhang, Fan Fan. Evaluation of the oil/water selective plugging performance of nano-polymer microspheres in fractured carbonate reservoirs[J]. Journal of Zhejiang University Science A, 2019, 20(9): 714-726.

@article{title="Evaluation of the oil/water selective plugging performance of nano-polymer microspheres in fractured carbonate reservoirs",
author="Jie Wang, Fu-jian Zhou, Jun-jian Li, Kai Yang, Lu-feng Zhang, Fan Fan",
journal="Journal of Zhejiang University Science A",
volume="20",
number="9",
pages="714-726",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A1900249"
}

%0 Journal Article
%T Evaluation of the oil/water selective plugging performance of nano-polymer microspheres in fractured carbonate reservoirs
%A Jie Wang
%A Fu-jian Zhou
%A Jun-jian Li
%A Kai Yang
%A Lu-feng Zhang
%A Fan Fan
%J Journal of Zhejiang University SCIENCE A
%V 20
%N 9
%P 714-726
%@ 1673-565X
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1900249

TY - JOUR
T1 - Evaluation of the oil/water selective plugging performance of nano-polymer microspheres in fractured carbonate reservoirs
A1 - Jie Wang
A1 - Fu-jian Zhou
A1 - Jun-jian Li
A1 - Kai Yang
A1 - Lu-feng Zhang
A1 - Fan Fan
J0 - Journal of Zhejiang University Science A
VL - 20
IS - 9
SP - 714
EP - 726
%@ 1673-565X
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1900249


Abstract: 
Water channeling of fractured carbonate rocks seriously restricts oil well production and is particularly prominent in the Troyes oilfield, located in the north of Kazakhstan. A nanometer particulate matter (PM) solution was used to evaluate the plugging ability of matrix and fractured core in a fractured carbonate model. Results showed that PM had good dispersion and swelling ability in simulated formation water. The swelling rate reached more than 300% in 3 d. PM had a perfect deep plugging effect in both matrix core and fractured core. The residual resistance coefficient of matrix and fractured core after plugging reached between 3.29 and 5.88, and the plugging rate was between 69.58% and 83.01%. The higher the residual resistance coefficient, the higher the plugging rate. PM has a good selective plugging effect on oil/water. The oil/water selection coefficient Rw/o was less than 1.0 and close to 0, mainly because of the different mechanisms of oil/water and PM. Scanning electron microscope (SEM) imaging results showed that the plugging mechanism of PM in the throat and fractures was manifested mainly in three aspects: adsorptive retention, mechanical trapping, and agglomeration plugging. The mechanism was further verified by energy disperse spectroscopy (EDS) elemental analysis technology.

纳米聚合物微球在裂缝型碳酸盐岩储层油/水选择性封堵性能评价

目的:对聚合物微球(PM)在碳酸盐岩基质岩心与裂缝型岩心中封堵效果和油/水选择性进行综合评价.
创新点:1. 制作裂缝型碳酸盐岩模型并进行等效缝宽度计算. 2. 显微评价PM的水化膨胀特性. 3. 进行聚合物微球深层封堵性能评价. 4. 进行聚合物微球油/水选择性封堵评估.
方法:采用纳米级聚合物微球溶液,并以哈萨克斯坦北特鲁瓦裂缝型碳酸盐岩油藏储层温度(54 °C)和碳酸盐岩天然裂缝尺寸(0.02~0.03 mm)为实验条件. 通过碳酸盐岩裂缝型岩心模型制作、PM基本性能测试、岩心流动实验以及扫描式电子显微镜(SEM)和能谱分析仪(EDS)等微观手段,对PM在碳酸盐岩基质岩心与裂缝型岩心中封堵效果和油/水选择性进行综合评价.
结论:1. PM在水中具有良好的分散性和溶胀能力,3 d溶胀率高达300%以上,且对高矿化度盐水具有较强的耐受性. 2. PM在基质岩心和裂缝型岩心均具有较好的深部封堵效果. 30 cm长岩心模型封堵实验表明,封堵后的分段压降均匀分布,岩心基质和裂缝型岩心封堵后的残余阻力系数介于3.29~5.88,封堵率介于69.58%~83.01%,且残余阻力系数越大,封堵率越高. PM在岩心中水化膨胀后可形成有效封堵,且平均封堵率高达70%以上. 3. PM封堵的油/水选择系数Rw/o均小于1.0且接近于0,说明PM具有较强的油/水选择性封堵效果. 这主要是因为油/水与PM作用机理不同. PM遇水后溶胀且表面粘性增加而粘连在碳酸盐岩壁面,并且不同微球之间相互团聚形成较大体积的颗粒,因此增加了对注入水的封堵效果. PM在煤油中则性能稳定,不产生溶胀和粘连效果,因此对反向注入煤油具有较低的封堵效果. 4. SEM成像结果分析认为,PM在岩心喉道或天然微裂缝中的封堵机理主要包括三个方面:(1)PM单体在岩石颗粒表面吸附,降低喉道的尺寸,同时多个单颗粒小球增大了层内比表面积、降低了层内渗透率. (2)PM溶胀后在小尺寸孔道形成了机械捕集. (3)多个PM单体颗粒团聚成网状结构堵塞了大孔道. EDS元素分析技术进一步验证了其作用机理.

关键词:纳米聚合物微球. 裂缝型岩心. 封堵率. 油/水选择性. 封堵机理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Al-Anazi HA, Sharma MM, 2002. Use of a pH sensitive polymer for conformance control. Proceedings of the International Symposium and Exhibition on Formation Damage Control, SPE-73782-MS.

[2]Al-Ibadi A, Civan F, 2012. Experimental study of gel particles transport through porous media. Proceedings of the SPE Latin America and Caribbean Petroleum Engineering Conference, SPE-153557-MS.

[3]Al-Ibadi A, Civan F, 2013. Experimental investigation and correlation of thermal effects on near-wellbore formation treatment by gel particles. Proceedings of the SPE International Symposium on Oilfield Chemistry, SPE-164119-MS.

[4]Bai BJ, Wei MZ, Liu YZ, 2013. Field and lab experience with a successful preformed particle gel conformance control technology. Proceedings of the SPE Production and Operations Symposium, SPE-164511-MS.

[5]Dawe RA, Zhang YP, 1994. Mechanistic study of the selective action of oil and water penetrating into a gel emplaced in a porous medium. Journal of Petroleum Science and Engineering, 12(2):113-125.

[6]Dong ZX, Li YH, Lin MQ, et al., 2009. Rheological properties of polymer micro-gel dispersions. Petroleum Science, 6(3):294-298.

[7]Frampton H, Morgan JC, Cheung SK, et al., 2004. Development of a novel waterflood conformance control system. Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, SPE-89391-MS.

[8]Hua Z, Lin MQ, Dong ZX, et al., 2014. Study of deep profile control and oil displacement technologies with nanoscale polymer microspheres. Journal of Colloid and Interface Science, 424:67-74.

[9]Liang JT, Sun HW, Seright RS, 1995. Why do gels reduce water permeability more than oil permeability? SPE Reservoir Engineering, 10(4):282-286.

[10]Pu WF, Zhao S, Wang S, et al., 2018. Investigation into the migration of polymer microspheres (PMs) in porous media: implications for profile control and oil displacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 540:265-275.

[11]Ranganathan R, Lewis R, Mccool CS, et al., 1998. Experimental study of the gelation behavior of a polyacrylamide/ aluminum citrate colloidal-dispersion gel system. SPE Journal, 3(4):337-343.

[12]Rousseau D, Chauveteau G, Renard M, et al., 2005. Rheology and transport in porous media of new water shutoff/ conformance control microgels. Proceedings of the SPE International Symposium on Oilfield Chemistry, SPE-93254-MS.

[13]Wu YS, Bai BJ, 2008. Modeling particle gel propagation in porous media. Proceedings of the SPE Annual Technical Conference and Exhibition, SPE-115678-MS.

[14]Yang S, Wei J, 2015. Reservoir Physics. Schlumberger, Houston, USA, p.152-155.

[15]Yang Y, Wang YF, Zhang P, et al., 2012. Mechanisms and influencing factors of selective water shutoff agents. Oilfield Chemistry, 29(4):502-506 (in Chinese).

[16]Yao CJ, Xu XH, Wang D, et al., 2016. Research and application of micron-size polyacrylamide elastic microspheres (MPEMs) as a smart sweep improvement and profile modification agent. Proceedings of the SPE Improved Oil Recovery Conference, SPE-179531-MS.

[17]Yue XA, Wang YF, Wang KL, 2007. Improve Oil Recovery Basis. Petroleum Industry Publishing House, Beijing, China, p.92-93 (in Chinese).

[18]Zhao S, Pu WF, Wei B, et al., 2019. A comprehensive investigation of polymer microspheres (PMs) migration in porous media: EOR implication. Fuel, 235:249-258.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE