Full Text:   <922>

Summary:  <944>

CLC number: O354.4; O354.5

On-line Access: 2020-06-11

Received: 2020-01-19

Revision Accepted: 2020-06-22

Crosschecked: 2020-07-15

Cited: 0

Clicked: 1575

Citations:  Bibtex RefMan EndNote GB/T7714


Liang Li


Hong-bo Wang


Guo-yan Zhao


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2020 Vol.21 No.9 P.695-720


Efficient WENOCU4 scheme with three different adaptive switches

Author(s):  Liang Li, Hong-bo Wang, Guo-yan Zhao, Ming-bo Sun, Da-peng Xiong, Tao Tang

Affiliation(s):  Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China

Corresponding email(s):   whbwatch@nudt.edu.cn, zhaoguoyan09@nudt.edu.cn

Key Words:  WENOCU4, Shock-capturing schemes, Adaptive switch, Numerical robustness, Dissipation

Share this article to: More |Next Article >>>

Liang Li, Hong-bo Wang, Guo-yan Zhao, Ming-bo Sun, Da-peng Xiong, Tao Tang. Efficient WENOCU4 scheme with three different adaptive switches[J]. Journal of Zhejiang University Science A, 2020, 21(9): 695-720.

@article{title="Efficient WENOCU4 scheme with three different adaptive switches",
author="Liang Li, Hong-bo Wang, Guo-yan Zhao, Ming-bo Sun, Da-peng Xiong, Tao Tang",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Efficient WENOCU4 scheme with three different adaptive switches
%A Liang Li
%A Hong-bo Wang
%A Guo-yan Zhao
%A Ming-bo Sun
%A Da-peng Xiong
%A Tao Tang
%J Journal of Zhejiang University SCIENCE A
%V 21
%N 9
%P 695-720
%@ 1673-565X
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2000006

T1 - Efficient WENOCU4 scheme with three different adaptive switches
A1 - Liang Li
A1 - Hong-bo Wang
A1 - Guo-yan Zhao
A1 - Ming-bo Sun
A1 - Da-peng Xiong
A1 - Tao Tang
J0 - Journal of Zhejiang University Science A
VL - 21
IS - 9
SP - 695
EP - 720
%@ 1673-565X
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2000006

Although classical WENOCU schemes can achieve high-order accuracy by introducing a moderate constant parameter C to increase the contribution of optimal weights, they exhibit distinct numerical dissipation in smooth regions. This study presents an extension of our previous research which confirmed that adaptively adjusting parameter C can indeed overcome the inadequacy of the usage of a constant small value. Cmin is applied near a discontinuity while Cmax is used elsewhere and they are switched according to the variation of the local flow-field property. This study provides the reference values of the adaptive parameter C of WENOCU4 and systematically evaluates the comprehensive performance of three different switches (labeled as the binary, continuous, and hyperbolic tangent switches, respectively) based on an optimized efficient WENOCU4 scheme (labeled as EWENOCU4). Varieties of 1D scalar equations, empirical dispersion relation analysis, and multi-dimensional benchmark cases of Euler equations are analyzed. Generally, the dissipation and dispersion properties of these three switches are similar. Especially, employing the binary switch, EWENOCU4 achieves the best comprehensive properties. Specifically, the binary switch can efficiently filter more misidentifications in smooth regions than others do, particularly for the cases of 1D scalar equations and Euler equations. Also, the computational efficiency of the binary switch is superior to that of the hyperbolic tangent switch. Moreover, the optimized scheme exhibits high-resolution spectral properties in the wavenumber space. Therefore, employing the binary switch is a more cost-effective improvement for schemes and is particularly suitable for the simulation of complex shock/turbulence interaction. This study provides useful guidance for the reference values of parameter C and the evaluation of adaptive switches.


目的:现有研究尚未提供WENOCU4格式中参数C的建议值.本文旨在根据流场特性自适应地调节参数C的量级从而提高格式的数值表现. 为此,通过广泛的数值模拟以提供自适应参数C的参考值,并系统地评估三种能够自适应调节参数C的开关的性能,测得综合表现最佳的开关,进而为获得高阶WENO改进型格式提供参考.
创新点:1. 提供了高效WENOCU4格式的自适应参数C的参考值; 2. 系统地评估了三种自适应开关(二进制型、连续型和双曲正切型)的性能,并证实了二进制型开关的最佳表现.
方法:1. 通过理论分析,系统研究三种自适应开关的原理和性能特点; 2. 通过广泛的数值模拟(包括一维标量方程、经验色散关系和多维欧拉方程的标准算例),获得自适应参数C的参考值并验证其合理性; 3. 通过广泛的数值模拟,系统评估三种自适应开关的综合表现(包括数值色散和耗散特性以及计算效率),并获得综合性能最佳的自适应开关.
结论:1. 对于高效WENOCU4格式而言,本研究证实了Cmin=40和Cmax=400是合理的自适应参数C的参考值,因此不应该直接采用WENOCU6的原始建议值. 2. 根据流场的连续性,采用自适应的参数C可以在保证数值稳定性的同时,有效地抑制WENOCU4的数值耗散. 3. 相比于其它开关,二进制型开关的综合表现最佳;其能够过滤激波感知器在光滑区域的一些误判,构造简单,且计算效率较高. 4. 本研究对三种自适应开关的评估具有一般性,因此易于拓展到其它高阶WENO格式的改进工作中.

关键词:WENOCU4; 激波捕捉格式; 自适应开关; 数值鲁棒性; 耗散性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Adams NA, Shariff K, 1996. A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. Journal of Computational Physics, 127(1):27-51.

[2]Borges R, Carmona M, Costa B, et al., 2008. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 227(6):3191-3211.

[3]Casper J, Carpenter MH, 1998. Computational considerations for the simulation of shock-induced sound. SIAM Journal on Scientific Computing, 19(3):813-828.

[4]Fleischmann N, Adami S, Adams NA, 2019. Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes. Computers & Fluids, 189:94-107.

[5]Henrick AK, Aslam TD, Powers JM, 2005. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. Journal of Computational Physics, 207(2):542-567.

[6]Honein AE, Moin P, 2004. Higher entropy conservation and numerical stability of compressible turbulence simulations. Journal of Computational Physics, 201(2):531-545.

[7]Hu XY, Wang Q, Adams NA, 2010. An adaptive central-upwind weighted essentially non-oscillatory scheme. Journal of Computational Physics, 229(23):8952-8965.

[8]Hu XY, Wang B, Adams NA, 2015. An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. Journal of Computational Physics, 301:415-424.

[9]Jeong J, Hussain F, 1995. On the identification of a vortex. Journal of Fluid Mechanics, 285:69-94.

[10]Jiang GS, Shu CW, 1996. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1):202-228.

[11]Larsson J, Gustafsson B, 2008. Stability criteria for hybrid difference methods. Journal of Computational Physics, 227(5):2886-2898.

[12]Lax PD, 1954. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Communications on Pure and Applied Mathematics, 7(1):159-193.

[13]Lax PD, Liu XD, 1998. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM Journal on Scientific Computing, 19(2):319-340.

[14]Lele SK, 1992. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1):16-42.

[15]Li XL, Fu DX, Ma YW, 2002. Direct numerical simulation of compressible isotropic turbulence. Science in China Series A: Mathematics, 45(11):1452-1460.

[16]Liu XD, Osher S, Chan T, 1994. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 115(1):200-212.

[17]Martín MP, Taylor EM, Wu M, et al., 2006. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. Journal of Computational Physics, 220(1):270-289.

[18]Pirozzoli S, 2002. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. Journal of Computational Physics, 178(1):81-117.

[19]Pirozzoli S, 2006. On the spectral properties of shock-capturing schemes. Journal of Computational Physics, 219(2):489-497.

[20]Pirozzoli S, 2011. Numerical methods for high-speed flows. Annual Review of Fluid Mechanics, 43:163-194.

[21]Sod GA, 1978. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1):1-31.

[22]Taylor EM, Wu MW, Martín MP, 2007. Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. Journal of Computational Physics, 223(1):384-397.

[23]Woodward P, Colella P, 1984. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54(1):115-173.

[24]Wu XS, Zhao YX, 2015. A high-resolution hybrid scheme for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 78(3):162-187.

[25]Young YN, Tufo H, Dubey A, et al., 2001. On the miscible Rayleigh-Taylor instability: two and three dimensions. Journal of Fluid Mechanics, 447:377-408.

[26]Zhao GY, Sun MB, Mei Y, et al., 2019a. An efficient adaptive central-upwind WENO-CU6 numerical scheme with a new sensor. Journal of Scientific Computing, 81(2):649-670.

[27]Zhao GY, Sun MB, Memmolo A, et al., 2019b. A general framework for the evaluation of shock-capturing schemes. Journal of Computational Physics, 376:924-936.

[28]Zhao GY, Sun MB, Pirozzoli S, 2020. On shock sensors for hybrid compact/WENO schemes. Computers & Fluids, 199:104439.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE