CLC number:
On-line Access: 2022-06-22
Received: 2021-10-26
Revision Accepted: 2022-05-23
Crosschecked: 2022-09-22
Cited: 0
Clicked: 903
Jun ZOU, Jian-min ZHANG, Chang-yuan LI. Effects of the mixing degree upstream of the diverging area on the pollutant allocation characteristics of a braided river[J]. Journal of Zhejiang University Science A, 2022, 23(9): 733-744.
@article{title="Effects of the mixing degree upstream of the diverging area on the pollutant allocation characteristics of a braided river",
author="Jun ZOU, Jian-min ZHANG, Chang-yuan LI",
journal="Journal of Zhejiang University Science A",
volume="23",
number="9",
pages="733-744",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2100540"
}
%0 Journal Article
%T Effects of the mixing degree upstream of the diverging area on the pollutant allocation characteristics of a braided river
%A Jun ZOU
%A Jian-min ZHANG
%A Chang-yuan LI
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 9
%P 733-744
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2100540
TY - JOUR
T1 - Effects of the mixing degree upstream of the diverging area on the pollutant allocation characteristics of a braided river
A1 - Jun ZOU
A1 - Jian-min ZHANG
A1 - Chang-yuan LI
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 9
SP - 733
EP - 744
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2100540
Abstract: The mixing degree upstream of the diverging area is one of the important factors influencing the pollutant allocation characteristics of braided rivers, but the effect remains unclear at present. In this paper, physical model tests were designed to study the effect on the pollutant flux ratio with six branching forms and a series of longitudinal discharge distances. The results indicated that the mixing degree upstream of the diverging area, which is closely related to the longitudinal discharge distance, notably affected the pollutant flux ratio. The lower the mixing degree, the larger was the deviation of the pollutant flux ratio from the discharge ratio. Moreover, a linear relationship was attained between the dimensionless mixing degree and the dimensionless deviation of the pollutant flux ratio from the discharge ratio. Consideration of different branching angles or different water layers or different branches did not affect this trend. The experimental results further demonstrated that the intercept and slope of the aforementioned linear relationship depended on the branching angle and exhibited an opposite monotonicity with a symmetric branch angle as the dividing point. These results help towards a better understanding of the mechanism of the factors influencing pollutant transport in complicated braided rivers, and provide a new approach to predicting the pollutant flux ratio of braided rivers.
[1]AlexeevskyNI, ChalovRS, BerkovichKM, et al., 2013. Channel changes in largest Russian rivers: natural and anthropogenic effects. International Journal of River Basin Management, 11(2):175-191.
[2]ChalovS, MoreidoV, SharapovaE, et al., 2020. Hydrodynamic controls of particulate metals partitioning along the Lower Selenga river—main tributary of the Lake Baikal. Water, 12(5):1345.
[3]ChalovSR, AlexeevskyNI, 2015. Braided rivers: structure, types and hydrological effects. Hydrology Research, 46(2):258-275.
[4]DasA, BarmanBC, NandiN, 2022. On some aspects of flow characteristics of the bifurcated channel–an experimental approach. ISH Journal of Hydraulic Engineering, in press.
[5]GuL, HuaZL, ChuKJ, et al., 2011a. Experimental study on transport characteristics of pollutants with different density in braided river. Journal of Hydroelectric Engineering, 30(6):242-250 (in Chinese).
[6]GuL, HuaZL, ZhangCK, et al., 2011b. Mixing characteristics and transport flux ratio of pollutants in braided rivers. Fresenius Environmental Bulletin, 20(9):2315-2325.
[7]HuaZL, GuL, 2008. Experiments on pollutant transport of centerline discharge into the braided river. Proceedings of the 16th IAHR-APD Congress and the 3rd Symposium of IAHR-ISHS.
[8]HuaZL, PengJ, JiW, et al., 2013a. Modeling experiment on characteristics of pollutant transport and mixing in waterway with multi-anabranch and Five Islets. Environmental Science & Technology, 36(8):6-10 (in Chinese).
[9]HuaZL, JiW, ShanNN, et al., 2013b. Pollutant mixing and transport process via diverse transverse release positions in a multi-anabranch river with three braid bars. Water Science and Engineering, 6(3):250-261.
[10]JiW, HuaZL, WuW, et al., 2012. Transport and mixing characteristics of pollutants by continuous point source discharge in the multi-anabranch river with Three Braid Bars. Proceedings of the International Conference on Biomedical Engineering and Biotechnology.
[11]JiangF, ChenWP, ChenM, et al., 2006. Primary study on diffusion of contaminants in meandering furcated rivers. Water Resources Protection, 22(4):30-32 (in Chinese).
[12]LeeME, SeoIW, 2007. Analysis of pollutant transport in the Han River with tidal current using a 2D finite element model. Journal of Hydro-environment Research, 1(1):30-42.
[13]LeopoldLB, WolmanMG, 1957. River Channel Patterns: Braided, Meandering, and Straight. USGS Numbered Series, U.S. Government Printing Office, Washington, USA.
[14]LiKF, ZhaoWQ, 1994. Study on diffusion and mixing law of pollutants in braided river. Water Resources Protection, (1):8-12 (in Chinese).
[15]LuHY, LiZW, HuXY, et al., 2022. Morphodynamic processes in a large gravel-bed braided channel in response to runoff change: a case study in the source region of Yangtze River. Arabian Journal of Geosciences, 15(5):377.
[16]OkuyadeWIA, AbbeyTM, 2016. Pollutants spread in a bifurcating river: the River Nun, Bayelsa, Nigeria. Journal of Scientific Research and Reports, 12(6):1-19.
[17]PengFJ, LiKF, LiangRF, et al., 2021. Shallow lake water exchange process before and after water diversion pro
[18]jects as affected by wind field. Journal of Hydrology, 592:125785.
[19]RedolfiM, 2015. Sediment Transport and Morphology of Braided Rivers: Steady and Unsteady Regime. PhD Thesis, Queen Mary University of London, London, UK.
[20]YangHY, LinBL, ZhouJJ, 2015. Physics-based numerical modelling of large braided rivers dominated by suspended sediment. Hydrological Processes, 29(8):1925-1941.
[21]YunSH, SeoIW, KwonSY, 2019. Analysis of analysis of behavior of contaminants at the braided river using the transient storage model. Proceedings of the 38th IAHR World Congress.
Open peer comments: Debate/Discuss/Question/Opinion
<1>