CLC number:
On-line Access: 2022-10-20
Received: 2022-03-23
Revision Accepted: 2022-08-18
Crosschecked: 2022-10-21
Cited: 0
Clicked: 1068
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-7483-0045
https://orcid.org/0000-0003-0930-7810
Wen-tao HU, Da-wei JIANG, Sai WU, Ke CHEN, Gang CHEN. Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems[J]. Journal of Zhejiang University Science A, 2022, 23(10): 832-837.
@article{title="Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems",
author="Wen-tao HU, Da-wei JIANG, Sai WU, Ke CHEN, Gang CHEN",
journal="Journal of Zhejiang University Science A",
volume="23",
number="10",
pages="832-837",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A2200156"
}
%0 Journal Article
%T Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems
%A Wen-tao HU
%A Da-wei JIANG
%A Sai WU
%A Ke CHEN
%A Gang CHEN
%J Journal of Zhejiang University SCIENCE A
%V 23
%N 10
%P 832-837
%@ 1673-565X
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A2200156
TY - JOUR
T1 - Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems
A1 - Wen-tao HU
A1 - Da-wei JIANG
A1 - Sai WU
A1 - Ke CHEN
A1 - Gang CHEN
J0 - Journal of Zhejiang University Science A
VL - 23
IS - 10
SP - 832
EP - 837
%@ 1673-565X
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A2200156
Abstract: Complex integrity constraint discovery: measuring trust in modern intelligent railroad systems
[1]AkR, FinkO, ZioE, 2016. Two machine learning approaches for short-term wind speed time-series prediction. IEEE Transactions on Neural Networks and Learning Systems, 27(8):1734-1747.
[2]AzzedineB, ZhengLN, AlfandiO, 2021. Outlier detection: methods, models, and classification. ACM Computing Surveys, 53(3):1-37.
[3]BaiQB, BediAS, AgarwalM, et al., 2022. Achieving zero constraint violation for constrained reinforcement learning via primal-dual approach. Proceedings of the 36th AAAI Conference on Artificial Intelligence, p.3682-3689.
[4]Berti-ÉquilleL, HarmouchH, NaumannF, et al., 2018. Discovery of genuine functional dependencies from relational data with missing values. Proceedings of the VLDB Endowment, 11(8):880-892.
[5]BleifußT, KruseS, NaumannF, 2017. Efficient denial constraint discovery with hydra. Proceedings of the VLDB Endowment, 11(3):311-323.
[6]CaruccioL, DeufemiaV, PoleseG, 2016. Relaxed functional dependencies—a survey of approaches. IEEE Transactions on Knowledge and Data Engineering, 28(1):147-165.
[7]ChenHT, JiangB, DingSX, et al., 2022. Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives. IEEE Transactions on Intelligent Transportation Systems, 23(3):1700-1716.
[8]FanWF, GeertsF, LiJZ, et al., 2011. Discovering conditional functional dependencies. IEEE Transactions on Knowledge and Data Engineering, 23(5):683-698.
[9]FanWF, HuCM, LiuXL, et al., 2020. Discovering graph functional dependencies. ACM Transactions on Database Systems, 45(3):15.
[10]HoLV, NguyenHD, de RoeckG, et al., 2021. Damage detection in steel plates using feed-forward neural network coupled with hybrid particle swarm optimization and gravitational search algorithm. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(6):467-480.
[11]HuQX, LongJS, WangSK, et al., 2021. A novel time-span input neural network for accurate municipal solid waste incineration boiler steam temperature prediction. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(10):777-791.
[12]HuWT, ZhangDX, JiangDW, et al., 2020. AUDITOR: a system designed for automatic discovery of complex integrity constraints in relational databases. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, p.2697-2700.
[13]HuhtalaY, KärkkäinenJ, PorkkaP, et al., 1999. Tane: an efficient algorithm for discovering functional and approximate dependencies. The Computer Journal, 42(2):100-111.
[14]KieuT, YangB, GuoCJ, et al., 2019. Outlier detection for time series with recurrent autoencoder ensembles. Proceedings of the 28th International Joint Conference on Artificial Intelligence, p.2725-2732.
[15]KossmannJ, PapenbrockT, NaumannF, 2022. Data dependencies for query optimization: a survey. The VLDB Journal, 31(1):1-22.
[16]KruseS, NaumannF, 2018. Efficient discovery of approximate dependencies. Proceedings of the VLDB Endowment, 11(7):759-772.
[17]LivshitsE, KimelfeldB, RoyS, 2020. Computing optimal repairs for functional dependencies. ACM Transactions on Database Systems, 45(1):4.
[18]MaliniN, PushpaM, 2017. Analysis on credit card fraud identification techniques based on KNN and outlier detection. Proceedings of the 3rd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, p.255-258.
[19]PenaEHM, de AlmeidaEC, NaumannF, 2019. Discovery of approximate (and exact) denial constraints. Proceedings of the VLDB Endowment, 13(3):266-278.
[20]PenaEHM, de AlmeidaEC, NaumannF, 2021. Fast detection of denial constraint violations. Proceedings of the VLDB Endowment, 15(4):859-871.
[21]QahtanA, TangN, OuzzaniM, et al., 2020. Pattern functional dependencies for data cleaning. Proceedings of the VLDB Endowment, 13(5):684-697.
[22]RanjanKG, TripathyDS, PrustyBR, et al., 2021. An improved sliding window prediction-based outlier detection and correction for volatile time-series. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 34(1):e2816.
[23]SharmaV, ChandelSS, 2013. Performance and degradation analysis for long term reliability of solar photovoltaic systems: a review. Renewable and Sustainable Energy Reviews, 27:753-767.
[24]TanP, LiXF, XuJM, et al., 2020. Catenary insulator defect detection based on contour features and gray similarity matching. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(1):64-73.
[25]WuPZ, YangW, WangHC, et al., 2020. GDS: general distributed strategy for functional dependency discovery algorithms. Proceedings of the 25th International Conference on Database Systems for Advanced Applications, p.270-278.
[26]ZhouP, LiT, ZhaoCF, et al., 2020. Numerical study on the flow field characteristics of the new high-speed maglev train in open air. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(5):366-381.
[27]ZhuL, YuFR, WangYG, et al., 2019. Big data analytics in intelligent transportation systems: a survey. IEEE Transactions on Intelligent Transportation Systems, 20(1):383-398.
Open peer comments: Debate/Discuss/Question/Opinion
<1>