Full Text:   <2168>

CLC number: S635.9

On-line Access: 

Received: 2008-11-03

Revision Accepted: 2009-03-31

Crosschecked: 2009-04-28

Cited: 12

Clicked: 4813

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2009 Vol.10 No.6 P.454~464


Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)

Author(s):  Gui-xiao LA, Ping FANG, Yi-bo TENG, Ya-juan LI, Xian-yong LIN

Affiliation(s):  Ministry of Education Key Lab of Environment Remediation and Ecological Health, College of Environmental and Natural Resources Science, Zhejiang University, Hangzhou 310029, China; more

Corresponding email(s):   zdpfang@zju.edu.cn

Key Words:  Carbon dioxide (CO2), Brassica alboglabra, Nitrogen (N), Growth, Bolting stem, Aliphatic glucosinolates, Indolyl glucosinolates, Carbon/nitrogen ratio (C/N), Nitrogen/sulfur ratio (N/S)

Gui-xiao LA, Ping FANG, Yi-bo TENG, Ya-juan LI, Xian-yong LIN. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)[J]. Journal of Zhejiang University Science B, 2009, 10(6): 454~464.

@article{title="Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)",
author="Gui-xiao LA, Ping FANG, Yi-bo TENG, Ya-juan LI, Xian-yong LIN",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)
%A Gui-xiao LA
%A Ping FANG
%A Yi-bo TENG
%A Ya-juan LI
%A Xian-yong LIN
%J Journal of Zhejiang University SCIENCE B
%V 10
%N 6
%P 454~464
%@ 1673-1581
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0820354

T1 - Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)
A1 - Gui-xiao LA
A1 - Ping FANG
A1 - Yi-bo TENG
A1 - Ya-juan LI
A1 - Xian-yong LIN
J0 - Journal of Zhejiang University Science B
VL - 10
IS - 6
SP - 454
EP - 464
%@ 1673-1581
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0820354

The effects of CO2 enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Ahmad, G., Jan, A., Arif, M., Jan, M.T., Khattak, R.A., 2007. Influence of nitrogen and sulfur fertilization on quality of canola(Brassica napus L.) underrainfed conditions. J. Zhejiang Univ. Sci. B, 8(10):731-737.

[2] Aires, A., Rosa, E., Carvalho, R., 2006. Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J. Sci. Food Agric., 86(10):1512-1516.

[3] Amthor, J.S., 2001. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res., 73(1):1-34.

[4] Baik, H.Y., Juvik, J.A., Jeffery, E.H., Wallig, M.A., Kushad, M., Klein, B.P., 2003. Relating glucosinolate content and flavor of broccoli cultivars. J. Food Sci., 68(3):1043-1050.

[5] Baxter, R., Ashenden, T.W., Farrar, J.F., 1994. Effects of elevated carbon dioxide on three grass species from montane pasture. II. Nutrient uptake, allocation and efficiency of use. J. Exp. Bot., 45(9):1267-1278.

[6] Bazzaz, F.A., 1990. The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst., 21(1): 167-196.

[7] Bidart-Bouzat, M.G., Mithen, R., Berenbaum, M.R., 2005. Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia, 145(3): 415-424.

[8] Bones, A.M., Rossiter, J.T., 1996. The myrosinase glucosinolates system, its organization and biochemistry. Plant Physiol., 97(1):194-208.

[9] Bryant, J.P., Chapin, F.S., Klein, D.R., 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40(3):357-368.

[10] Caswell, H., 2004. Advances in Ecological Research. Academic Press, New York.

[11] Chen, R.Y., Liu, H.C., Song, C.Z., Sun, G.W., 2005. Effect of nitrogen nutrient on the growth and quality of Chinese kale. Trans. CSAE, 21(S):143-146 (in Chinese).

[12] Chew, F.S., 1988. Biologically Active Natural Products. American Chemical Society Symposium, Washington DC.

[13] Cotrufo, M.F., Ineson, P., Scott, A., 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Change Biol., 4(1):43-54.

[14] Das, M., Pal, M., Zaidi, P.H., Raj, A., Sengupta, U.K., 2002. Stage sensitivity of mung bean (Vigna radiata L. Wilczek) to an elevated level of carbon dioxide. J. Agron. Crop Sci., 188(4):219-224.

[15] Epron, D., Liozon, R., Mousseau, M., 1996. Effects of elevated CO2 concentration on leaf characteristics and photosynthetic capacity of beech (Fagus sylvatica) during the growing season. Tree Physiol., 16:425-432.

[16] Fahey, J.W., Zhang, Y., Talalay, P., 1997. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA, 94(19):10367-10372.

[17] Fenwick, G.R., Heaney, R.K., Mullin, W.J., 1983. Glucosinolates and their breakdown products in food and food plants. CRC Crit. Rev. Food Sci. Nutr., 18(2):123-201.

[18] Fenwick, G.R., Heaney, R.K., Mawson, R., 1989. Toxicants of Plant Origin. CRC Press, Florida.

[19] Gijzen, M., McGregor, I., Seguin-Swartz, G., 1989. Glucosinolate uptake by developing rapeseed embryos. Plant Physiol., 89(1):260-263.

[20] Habash, D.Z., Paul, M.J., Parry, M.A., Keys, A.J., Lawlor, D.W., 1995. Increased capacity for photosynthesis in wheat grown at elevated CO2: the relationship between electron-transport and carbon metabolism. Planta, 197(3): 482-489.

[21] Halkier, B.A., Du, L., 1997. The biosynthesis of glucosinolates. Trends Plant Sci., 2(11):425-431.

[22] He, H.J., Chen, H., Schnitzler, W.H., 2002. Glucosinolate composition and contents in Brassica vegetables. Sci. Agric. Sinica, 35(2):192-197 (in Chinese).

[23] Heaney, R.K., Fenwick, G.R., 1995. Natural toxins and protective factors in Brassica species, including rapeseed. Nat. Toxins, 3(4):233-237.

[24] Hesse, H., Nikiforova, V., Gakiere, B., Hoefgen, R., 2004. Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J. Exp. Bot., 55(401):1283-1292.

[25] Himanen, S.J., Nissinen, A., Auriola, S., Poppy, G.M., Stewart, C.N., Holopainen, J.K., Nerg, A.M., 2008. Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta, 227(2):427-437.

[26] Hoagland, D.R., Arnon, D.I., 1938. The Water Culture Method for Growing Plants Without Soil, Circ 347. California Agricultural Experiment Station, Berkley.

[27] Holst, B., Williamson, G., 2004. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep., 21(3):425-447.

[28] IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007. Cambridge University Press, Cambridge.

[29] Islam, M.S., Matsui, T., Yoshida, Y., 1996. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Sci. Hortic., 65(2-3):137-149.

[30] Karowe, D.N., Seimens, D.H., Mitchell-olds, T., 1997. Species-specific response of glucosinolate content to elevated atmospheric CO2. J. Chem. Ecol., 23(11):2569-2582.

[31] Kiddle, G., Bennett, R.N., Botting, N.P., Davidson, N.E., Robertson, A.A.B., Wallsgrove, R.M., 2001. High performance liquid chromatography separation of natural and synthetic desulfoglucosinolates and their chemical validation by spectroscopic, NMR and CI-MS methods. Phytochem. Anal., 12(4):226-242.

[32] Kim, H.Y., Lieffering, M., Miura, S., Kobayashi, K., Okada, M., 2001. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytol., 150(2):223-229.

[33] Kim, S.J., Matsuo, T., Watanabe, M., Watanabe, Y., 2002. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Sci. Plant Nutr., 48(1):43-49.

[34] Kimball, B.A., Pinter, J.P.J., Garcia, R.L., LaMorte, R.L., Wall, G.W., Hunsaker, D.J., Wechsung, G., Wechsung, F., Kartschall, T., 1995. Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biol., 1(6):429-442.

[35] Kimball, B.A., Zhu, J.G., Cheng, L., Kobayashi, K., Bindi, M., 2002. Responses of agricultural crops to free-air CO2 enrichment. J. Appl. Ecol., 13(10):1323-1338 (in Chinese).

[36] Kobayashi, K., Lieffering, M., Kim, H.Y., 2001. Structure and Function in Agroecosystem Design and Management. CRC Press, Florida.

[37] Kohlmeier, L., Su, L., 1997. Cruciferous vegetable consumption and colorectal cancer risk: meta-analysis of the epidemiological evidence. FASEB J., 11(3):2141.

[38] Kushad, M.M., Brown, A.F., Kurilich, A.C., Juvik, J.A., Klein, B.P., Wallig, M.A., Jerrery, E.H., 1999. Variation of glucosinolates in vegetables crops of Brassica oleracea. J. Agric. Food Chem., 47(4):1541-1548.

[39] La, G.X., Fang, P., Li, Y.J., Wang, Y., 2008. Determination of desulpho-glucosinolates in bolting stems of Chinese kale by liquid chromatography-mass spectrometry. Journal of Zhejiang University (Agric. Life Sci.), 34(5):557-563 (in Chinese).

[40] Larigauderie, A., Hilbert, D.W., Oechel, W.C., 1988. Effect of CO2 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass, Bromus mollis. Oecologia, 77(4):544-549.

[41] Li, J., Zhou, J.M., Duan, Z.Q., Du, C.W., Wang, H.Y., 2007. Effect of CO2 enrichment on the growth and nutrient uptake of tomato seedlings. Pedosphere, 17(3):343-351.

[42] Louda, S., Mole, S., 1991. Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd Ed. Academic Press, New York.

[43] Lu, R.K., 1999. Analytical Methods of Soil Agro-chemistry. Chinese Agriculture Science and Technology Press, Beijing (in Chinese).

[44] Macfarlane-Smith, W.H., Griffiths, D.W., 1988. A time-course study of glucosinolates in the ontogeny of forage rape (Brassica napus L.). J. Sci. Food Agric., 43(2): 121-134.

[45] Mikkelsen, M.D., Petersen, B., Olsen, C., Halkier, B.A., 2002. Biosynthesis and metabolic engineering of glucosinolates. Amino Acids, 22(3):279-295.

[46] Mithen, R.F., Dekker, M., Verkerk, R., Rabot, S., Johnson, I.T., 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric., 80(7):967-984.

[47] Mooney, H.A., Drake, B.G., Luxmoore, R.J., Oechei, W.C., Pitelka, L.F., 1991. Predicting ecosystem responses to elevated CO2 concentrations. Bioscience, 41(2):96-104.

[48] Nilsson, J., Olsson, K., Engqvist, G., Ekvall, J., Olsson, M., Nyman, M., Kesson, B., 2006. Variation in the content of glucosinolates, hydroxycinnamic acids, carotenoids, total antioxidant capacity and low-molecular-weight carbohydrates in Brassica vegetables. J. Sci. Food Agric., 86(4): 528-538.

[49] Padilla, G., Cartea, M.E., Velasco, P., de Haro, A., Prdás, A., 2007. Variation of glucosinolates in vegetable crop of Brassica rapa. Phytochemistry, 68(4):536-545.

[50] Peñuelas, J., Estiarte, M., 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol. Evol., 13(1):20-24.

[51] Price, K.R., Casuscelli, F., Colquhoun, I.J., Rhodes, M.J.C., 1998. Composition and content of flavonol glycosides in broccoli florets (Brassica oleracea) and their fate during cooking. J. Sci. Food Agric., 77(4):468-472.

[52] Pruden, G., Kalembasa, S.J., Jenkinson, D.S., 1985. Reduction of nitrate of prior to Kjeldahl digestion. J. Sci. Food Agric., 36(2):71-73.

[53] Reddy, G.V.P., Tossavainen, P., Nerg, A.M., Holopainen, J.K., 2004. Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist Plutella xylostella, but not the generalist, Spodoptera littoralis. J. Agric. Food Chem., 52(13):4185-4191.

[54] Rodman, J.E., 1991. A taxonomic analysis of glucosinolate producing plants, part 1: Phenetics. Syst. Bot., 16(4): 598-618.

[55] Rosa, E., Heaney, R.K., Fenwick, G.R., Portas, C.A.M., 1997. Glucosinolates in crop plants. Hort. Rev., 19:99-215.

[56] Schnug, E., 1989. Double low oilseed rape in West Germany, sulphur nutrition and glucosinolate levels. Aspects Appl. Biol., 23:67-82.

[57] Schonhof, I., Kläring, H.P., Krumbein, A., Schreiner, M., 2007. Interaction between atmospheric CO2 and glucosinolates in Broccoli. J. Chem. Ecol., 33(1):105-114.

[58] Schreiner, M., 2005. Vegetable crop management strategies to increase the quantity of phytochemicals. Eur. J. Nutr., 44(2):85-94.

[59] Seegmüller, S., Schulte, M., Herschbach, C, Rennenberg, H., 1996. Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environ., 19(4):418-426.

[60] Shattuck, V.I., Wang, W., 1993. Nitrogen dioxide fumigation alters the glucosinolate and nitrate levels in pak choy (Brassica campestris ssp. Chinensis). Sci. Horticul., 56(2):87-100.

[61] Tawfiq, N., Heaney, R.K., Pulumb, J.A., Fenwick, G.R., Musk, S.R., Williamson, G., 1995. Dietary glucosinolates as blocking agents against carcinogenesis: glucosinolate breakdown products assessed by induction of quinine reductase activity in murine hepa1c1c7 cells. Carcinogenesis, 16(5):1191-1194.

[62] Wattenberg, L.W., 1993. Food and Cancer Prevention: Chemical and Biological Aspects. Royal Society of Chemistry, London.

[63] Zhao, F., Evans, E.J., Bilsborrow, P.E., Schnug, E., Syers, J.K., 1992. Correction for protein content in the determination of the glucosinolate content of rapeseed by the XRF method. J. Sci. Food Agric., 58(3):431-433.

[64] Zhao, F., Evans, E.J., Bilsborrow, P.E., Schnug, E., Syers, J.K., 1994. Influence of nitrogen and sulphur on the glucosinolate profiles of rapeseed (Brassica napus L.). J. Sci. Food Agric., 64(3):295-304.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE