CLC number: TS221
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2011-12-07
Cited: 12
Clicked: 6732
Hui Zhang, Lu Zhang, Li-juan Peng, Xiao-wu Dong, Di Wu, Vivian Chi-Hua Wu, Feng-qin Feng. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus[J]. Journal of Zhejiang University Science B, 2012, 13(2): 83-93.
@article{title="Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus",
author="Hui Zhang, Lu Zhang, Li-juan Peng, Xiao-wu Dong, Di Wu, Vivian Chi-Hua Wu, Feng-qin Feng",
journal="Journal of Zhejiang University Science B",
volume="13",
number="2",
pages="83-93",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100049"
}
%0 Journal Article
%T Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus
%A Hui Zhang
%A Lu Zhang
%A Li-juan Peng
%A Xiao-wu Dong
%A Di Wu
%A Vivian Chi-Hua Wu
%A Feng-qin Feng
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 2
%P 83-93
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100049
TY - JOUR
T1 - Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus
A1 - Hui Zhang
A1 - Lu Zhang
A1 - Li-juan Peng
A1 - Xiao-wu Dong
A1 - Di Wu
A1 - Vivian Chi-Hua Wu
A1 - Feng-qin Feng
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 2
SP - 83
EP - 93
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100049
Abstract: Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R2=0.942, Q2LOO=0.910; CoMFA: R2=0.979, Q2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents.
[1]Bergsson, G., Arnfinnsson, J., Steingrimsson, O., Thormar, H., 2001. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Chemother., 45(11):3209-3212.
[2]Branen, J.K., Davidson, P.M., 2004. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int. J. Food Microbiol., 90(1):63-74.
[3]Caballero, J., Saavedera, M., Fernandez, M., Gonzalez-Nilo, F.D., 2007. Quantitative structure-activity relationship of rubiscolin analogues as delta opioid peptides using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). J. Agric. Food Chem., 55(20):8101-8104.
[4]Cramer, R.D., Patterson, D.E., Bunce, J.D., 1988. Comparative molecular-field analysis (CoMFA). I. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 110(18):5959-5967.
[5]Dong, X.W., Liu, T., Yan, J.Y., Wu, P., Chen, J., Hu, Y.Z., 2009. Synthesis, biological evaluation and quantitative structure-activities relationship of flavonoids as vasorelaxant agents. Bioorg. Med. Chem., 17(2):716-726.
[6]Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., 1999. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1(1):55-68.
[7]Gonzalez, M.P., Teran, C., Saiz-Urra, L., Teijeira, M., 2008. Variable selection methods in QSAR: an overview. Curr. Top. Med. Chem., 8(18):1606-1627.
[8]Habulin, M., Sabeder, S., Knez, Z., 2008. Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity. J. Supercrit. Fluids, 45(3):338-345.
[9]Hemmer, M.C., Steinhauer, V., Gasteiger, J., 1999. Deriving the 3D structure of organic molecules from their infrared spectra. Vibrat. Spectrosc., 19(1):151-164.
[10]Hou, C.T., Forman, R., 2000. Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. J. Ind. Microbiol. Biotechnol., 24(4):275-276.
[11]Hsiao, C.P., Siebert, K.J., 1999. Modeling the inhibitory effects of organic acids on bacteria. Int. J. Food Microbiol., 47(3):189-201.
[12]Kabara, J.J., 1984. Antimicrobial agents derived from fatty-acids. J. Am. Oil Chem. Soc., 61(2):397-403.
[13]Kabara, J.J., Swieczkowski, D.M., Truant, J.P., Conley, A.J., Truant, J.P., 1972. Fatty-acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother., 2(1):23-28.
[14]Kabara, J.J., Vrable, R., Liekenjie, M.S.F., 1977. Antimicrbial lipids-natural and synthetic fatty-acids and monoglycerides. Lipids, 12(9):753-759.
[15]Kelsey, J.A., Bayles, K.W., Shafii, B., McGuire, M.A., 2006. Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus. Lipids, 41(10):951-961.
[16]Kodicek, E., 1949. The effect of unsaturated fatty acids on Gram-positive bacteria. Symp. Soc. Exp. Biol., 3:217-232.
[17]Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., 2008a. Modified and enhanced replacement method for the selection of molecular descriptors in QSAR and QSPR theories. Chemom. Intell. Lab. Syst., 92(2):138-144.
[18]Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., 2008b. QSAR Search Tool Tutorial-Replacement method. Available from http://www.mathworks.com/ matlabcentral/fileexchange/19578
[19]Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., 2010. Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J. Chem. Inf. Model., 50(9):1542-1548.
[20]Nagle, J.K., 1990. Atomic polarizability and electronegativity. J. Am. Chem. Soc., 112(12):4741-4747.
[21]Nakai, S.A., Siebert, K.J., 2003. Validation of bacterial growth inhibition models based on molecular properties of organic acids. Int. J. Food Microbiol., 86(3):249-255.
[22]Nakai, S.A., Siebert, K.J., 2004. Organic acid inhibition models for Listeria innocua, Listeria ivanovii, Pseudomonas aeruginosa and Oenococcus oeni. Food Microbiol., 21(1):67-72.
[23]Nobmann, P., Smith, A., Dunne, J., Henehan, G., Bourke, P., 2009. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms. Int. J. Food Microbiol., 128(3):440-445.
[24]Schmid, R., 2001. Recent advances in the description of the structure of water, the hydrophobic effect, and the like-dissolves-like rule. Monatshefte für Chemie, 132(11):1295-1326.
[25]Todeschini, R., Gramatica, P., 1997. 3D-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of the WHIM descriptors. Quant. Struct.-Act. Relat., 16(2):113-119.
[26]Todeschini, R., Consonni, V., 2000. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim and New York.
[27]Wei, D.G., Yang, G.F., Wan, J., Zhan, C.G., 2005. Binding model construction of antifungal 2-aryl-4-chromanones using CoMFA, CoMSIA, and QSAR analyses. J. Agric. Food Chem., 53(5):1604-1611.
Open peer comments: Debate/Discuss/Question/Opinion
<1>