Full Text:   <2995>

CLC number: R541.6+1

On-line Access: 2013-07-30

Received: 2013-05-13

Revision Accepted: 2013-07-04

Crosschecked: 2013-07-19

Cited: 5

Clicked: 5632

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2013 Vol.14 No.8 P.688-695

http://doi.org/10.1631/jzus.B1300137


Metabolic remodeling in chronic heart failure


Author(s):  Jing Wang, Tao Guo

Affiliation(s):  Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China

Corresponding email(s):   guotao20@hotmail.com

Key Words:  Chronic heart failure (CHF), Metabolic remodeling, Metabolic substrate, Metabolic capability


Jing Wang, Tao Guo. Metabolic remodeling in chronic heart failure[J]. Journal of Zhejiang University Science B, 2013, 14(8): 688-695.

@article{title="Metabolic remodeling in chronic heart failure",
author="Jing Wang, Tao Guo",
journal="Journal of Zhejiang University Science B",
volume="14",
number="8",
pages="688-695",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300137"
}

%0 Journal Article
%T Metabolic remodeling in chronic heart failure
%A Jing Wang
%A Tao Guo
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 8
%P 688-695
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300137

TY - JOUR
T1 - Metabolic remodeling in chronic heart failure
A1 - Jing Wang
A1 - Tao Guo
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 8
SP - 688
EP - 695
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300137


Abstract: 
Although the management of chronic heart failure (CHF) has made enormous progress over the past decades, CHF is still a tremendous medical and societal burden. metabolic remodeling might play a crucial role in the pathophysiology of CHF. The characteristics and mechanisms of metabolic remodeling remained unclear, and the main hypothesis might include the changes in the availability of metabolic substrate and the decline of metabolic capability. In the early phases of the disease, metabolism shifts toward carbohydrate utilization from fatty acids (FAs) oxidation. Along with the progress of the disease, the increasing level of the hyperadrenergic state and insulin resistance cause the changes that shift back to a greater FA uptake and oxidation. In addition, a growing body of experimental and clinical evidence suggests that the improvement in the metabolic capability is likely to be more significant than the selection of the substrate.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abozguia, K., Clarke, K., Lee, L., Frenneaux, M., 2006. Modification of myocardial substrate use as a therapy for heart failure. Nat. Clin. Pract. Cardiovasc. Med., 3(9):490-498.

[2]Abozguia, K., Shivu, G.N., Ahmed, I., Phan, T.T., Frenneaux, M.P., 2009. The heart metabolism: pathophysiological aspects in ischaemia and heart failure. Curr. Pharm. Des., 15(8):827-835.

[3]Arany, Z., He, H., Lin, J., Hoyer, K., Handschin, C., Toka, O., Ahmad, F., Matsui, T., Chin, S., Wu, P.H., et al., 2005. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab., 1(4):259-271.

[4]Ardehali, H., Sabbah, H.N., Burke, M.A., Sarma, S., Liu, P.P., Cleland, J.G., Maggioni, A., Fonarow, G.C., Abel, E.D., Campia, U., et al., 2012. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur. J. Heart Fail., 14(2):120-129.

[5]Ashrafian, H., Frenneaux, M.P., 2007. Metabolic modulation in heart failure: the coming of age. Cardiovasc. Drugs Ther., 21(1):5-7.

[6]Azevedo, P.S., Minicucci, M.F., Santos, P.P., Paiva, S.A., Zornoff, L.A., 2013. Energy metabolism in cardiac remodeling and heart failure. Cardiol. Rev., 21(3):135-140.

[7]Azizi-Namini, P., Ahmed, M., Yan, A.T., Keith, M., 2012. The role of B vitamins in the management of heart failure. Nutr. Clin. Pract., 27(3):363-374.

[8]Beauloye, C., Bertrand, L., Horman, S., Hue, L., 2011. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc. Res., 90(2):224-233.

[9]Beer, M., Seyfarth, T., Sandstede, J., Landschutz, W., Lipke, C., Köstler, H., von Kienlin, M., Harre, K., Hahn, D., Neubauer, S., 2002. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am. Coll. Cardiol., 40(7):1267-1274.

[10]Cleland, J.G.F., Daubert, J.C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., Tavazzi, L., 2005. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med., 352(15):1539-1549.

[11]Dávila-Román, V.G., Vedala, G., Herrero, P., de las Fuentes, L., Rogers, J.G., Kelly, D.P., Gropler, R.J., 2002. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol., 40(2):271-277.

[12]Decherd, G., Visscher, M.B., 1934. Energy metabolism of the failing heart. J. Exp. Med., 59(2):195-199.

[13]de las Fuentes, L., Herrero, P., Peterson, L.R., Kelly, D.P., Gropler, R.J., Dávila-Román, V.G., 2003. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension, 41(1):83-87.

[14]Dhalla, N.S., Saini-Chohan, H.K., Rodriguez-Leyva, D., Elimban, V., Dent, M.R., Tappia, P.S., 2009. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc. Res., 81(3):429-438.

[15]Dillon, L.M., Rebelo, A.P., Moraes, C.T., 2012. The role of PGC-1 coactivators in aging skeletal muscle and heart. IUBMB. Life, 64(3):231-241.

[16]Dinicolantonio, J.J., Lavie, C.J., Fares, H., Menezes, A.R., O′Keefe, J.H., 2013. l-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin. Proc., 88(6):544-551.

[17]Doenst, T., Abel, E.D., 2011. Spotlight on metabolic remodelling in heart failure. Cardiovasc. Res., 90(2):191-193.

[18]Finck, B.N., Kelly, D.P., 2006. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest., 116(3):615-622.

[19]Giordano, F.J., 2005. Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Invest., 115(3):500-508.

[20]Hanninen, S.A., Darling, P.B., Sole, M.J., Barr, A., Keith, M.E., 2006. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. J. Am. Coll. Cardiol., 47(2):354-361.

[21]Hesselink, M.K., Schrauwen, P., 2005. Uncoupling proteins in the failing human heart: friend or foe? Lancet, 365(9457):385-386.

[22]Hirsch, G.A., Bottomley, P.A., Gerstenblith, G., Weiss, R.G., 2012. Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts. J. Am. Coll. Cardiol., 59(9):802-808.

[23]Hunt, S.A., Abraham, W.T., Chin, M.H., Feldman, A.M., Francis, G.S., Ganiats, T.G., Jessup, M., Konstam, M.A., Mancini, D.M., Michl, K., et al., 2009. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J. Am. Coll. Cardiol., 53(15):e1-e90.

[24]Huss, J.M., Kelly, D.P., 2005. Mitochondrial energy metabolism in heart failure: a question of balance. J. Clin. Invest., 115(3):547-555.

[25]Karamanlidis, G., Nascimben, L., Couper, G.S., Shekar, P.S., del Monte, F., Tian, R., 2010. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ. Res., 106(9):1541-1548.

[26]Karbowska, J., Kochan, Z., Smolenski, R.T., 2003. Peroxisome proliferator-activated receptor α is downregulated in the failing human heart. Cell Mol. Biol. Lett., 8(1):49-53.

[27]Kehat, I., Molkentin, J.D., 2010. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25):2727-2735.

[28]Kemp, C.D., Conte, J.V., 2012. The pathophysiology of heart failure. Cardiovasc. Pathol., 21(5):365-371.

[29]Kolwicz, S.C.Jr., Tian, R., 2011. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res., 90(2):194-201.

[30]Lai, L., Leone, T.C., Zechner, C., Schaeffer, P.J., Kelly, S.M., Flanagan, D.P., Medeiros, D.M., Kovacs, A., Kelly, D.P., 2008. Transcriptional coactivators PGC-1α and PGC-1β control overlapping programs required for perinatal maturation of the heart. Genes. Dev., 22(14):1948-1961.

[31]Ledderose, C., Kreth, S., Beiras-Fernandez, A., 2011. Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function. Recent Pat. Endocr. Metab. Immune Drug Discov., 5(1):1-6.

[32]Lionetti, V., Stanley, W.C., Recchia, F.A., 2011. Modulating fatty acid oxidation in heart failure. Cardiovasc. Res., 90(2):202-209.

[33]Marsin, A.S., Bertrand, L., Rider, M.H., Deprez, J., Beauloye, C., Vincent, M.F., van den Berghe, G., Carling, D., Hue, L., 2000. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol., 10(20):1247-1255.

[34]Martin, M.A., Gomez, M.A., Guillen, F., Bornstein, B., Campos, Y., Rubio, J.C., de la Calzada, C.S., Arenas, J., 2000. Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim. Biophys. Acta Mol. Basis Dis., 1502(3):330-336.

[35]McMurray, J.J., Adamopoulos, S., Anker, S.D., Auricchio, A., Bohm, M., Dickstein, K., Falk, V., Filippatos, G., Fonseca, C., Gomez-Sanchez, M.A., et al., 2012. ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012. Eur. Heart J., 33(14):1787-1847.

[36]Murray, A.J., Edwards, L.M., Clarke, K., 2007. Mitochondria and heart failure. Curr. Opin. Clin. Nutr. Metab. Care, 10(6):704-711.

[37]Nagoshi, T., Yoshimura, M., Rosano, G.M., Lopaschuk, G.D., Mochizuki, S., 2011. Optimization of cardiac metabolism in heart failure. Curr. Pharm. Des., 17(35):3846-3853.

[38]Neubauer, S., 2007. The failing heart—an engine out of fuel. N. Engl. J. Med., 356(11):1140-1151.

[39]Neubauer, S., Horn, M., Cramer, M., Harre, K., Newell, J.B., Peters, W., Pabst, T., Ertl, G., Hahn, D., Ingwall, J.S., et al., 1997. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation, 96(7):2190-2196.

[40]Opie, L.H., 2012. Allopurinol for heart failure: novel mechanisms. J. Am. Coll. Cardiol., 59(9):809-812.

[41]Opie, L.H., Knuuti, J., 2009. The adrenergic-fatty acid load in heart failure. J. Am. Coll. Cardiol., 54(18):1637-1646.

[42]Opie, L.H., Commerford, P.J., Gersh, B.J., Pfeffer, M.A., 2006. Controversies in ventricular remodelling. Lancet, 367(9507):356-367.

[43]Paolisso, G., Gambardella, A., Galzerano, D., D′Amore, A., Rubino, P., Verza, M., Teasuro, P., Varricchio, M., D′Onofrio, F., 1994. Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism, 43(2):174-179.

[44]Petersen, K.F., Shulman, G.I., 2006. Etiology of insulin resistance. Am. J. Med., 119(5S1):S10-S16.

[45]Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B., Bittman, R., Hurley, S., Kleiman, J., Gatlin, M., et al., 2003. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med., 348(14):1309-1321.

[46]Rajabi, M., Kassiotis, C., Razeghi, P., Taegtmeyer, H., 2007. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev., 12(3-4):331-343.

[47]Randle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A., 1963. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 281(7285):785-789.

[48]Razeghi, P., Young, M.E., Alcorn, J.L., Moravec, C.S., Frazier, O.H., Taegtmeyer, H., 2001. Metabolic gene expression in fetal and failing human heart. Circulation, 104(24):2923-2931.

[49]Recchia, F.A., McConnell, P.I., Bernstein, R.D., Vogel, T.R., Xu, X., Hintze, T.H., 1998. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ. Res., 83(10):969-979.

[50]Riehle, C., Abel, E.D., 2012. PGC-1 proteins and heart failure. Trends Cardiovasc. Med., 22(4):98-105.

[51]Rosano, G.M., Fini, M., Caminiti, G., Barbaro, G., 2008. Cardiac metabolism in myocardial ischemia. Curr. Pharm. Des., 14(25):2551-2562.

[52]Rosca, M.G., Hoppel, C.L., 2010. Mitochondria in heart failure. Cardiovasc. Res., 88(1):40-50.

[53]Rowe, G.C., Jiang, A., Arany, Z., 2010. PGC-1 coactivators in cardiac development and disease. Circ. Res., 107(7):825-838.

[54]Sabbah, H.N., Sharov, V.G., Goldstein, S., 2000. Cell death, tissue hypoxia and the progression of heart failure. Heart Fail. Rev., 5(2):131-138.

[55]Sarma, S., Ardehali, H., Gheorghiade, M., 2012. Enhancing the metabolic substrate: PPAR-α agonists in heart failure. Heart Fail. Rev., 17(1):35-43.

[56]Shah, A.M., Mann, D.L., 2011. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet, 378(9792):704-712.

[57]Sihag, S., Cresci, S., Li, A.Y., Sucharov, C.C., Lehman, J.J., 2009. PGC-1α and ERRα target gene downregulation is a signature of the failing human heart. J. Mol. Cell Cardiol., 46(2):201-212.

[58]Sisakian, H., Torgomyan, A., Barkhudaryan, A., 2007. The effect of trimetazidine on left ventricular systolic function and physical tolerance in patients with ischaemic cardiomyopathy. Acta Cardiol., 62(5):493-499.

[59]Stanley, W.C., Recchia, F.A., Lopaschuk, G.D., 2005. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev., 85(3):1093-1129.

[60]Taegtmeyer, H., Ballal, K., 2006. No low-fat diet for the failing heart? Circulation, 114(20):2092-2093.

[61]Taylor, M., Wallhaus, T.R., Degrado, T.R., Russell, D.C., Stanko, P., Nickles, R.J., Stone, C.K., 2001. An evaluation of myocardial fatty acid and glucose uptake using pet with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med., 42(1):55-62.

[62]Tsutsui, H., Kinugawa, S., Matsushima, S., 2011. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol., 301(6):H2181-H2190.

[63]Turer, A.T., Malloy, C.R., Newgard, C.B., Podgoreanu, M.V., 2010. Energetics and metabolism in the failing heart: important but poorly understood. Curr. Opin. Clin. Nutr. Metab. Care, 13(4):458-465.

[64]Tuunanen, H., Knuuti, J., 2011. Metabolic remodelling in human heart failure. Cardiovasc. Res., 90(2):251-257.

[65]Tuunanen, H., Engblom, E., Naum, A., Scheinin, M., Nagren, K., Airaksinen, J., Nuutila, P., Iozzo, P., Ukkonen, H., Knuuti, J., 2006a. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J. Card. Fail., 12(8):644-652.

[66]Tuunanen, H., Engblom, E., Naum, A., Nagren, K., Hesse, B., Airaksinen, K.E., Nuutila, P., Iozzo, P., Ukkonen, H., Opie, L.H., et al., 2006b. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation, 114(20):2130-2137.

[67]Vadvalkar, S.S., Baily, C.N., Matsuzaki, S., West, M., Tesiram, Y.A., Humphries, K.M., 2013. Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of type 1 diabetes. Biochem. J., 449(1):253-261.

[68]van Bilsen, M., van Nieuwenhoven, F.A., van der Vusse, G.J., 2009. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc. Res., 81(3):420-428.

[69]Ventura-Clapier, R., Garnier, A., Veksler, V., 2004. Energy metabolism in heart failure. J. Physiol., 555(Pt1):1-13.

[70]Ventura-Clapier, R., Garnier, A., Veksler, V., Joubert, F., 2011. Bioenergetics of the failing heart. Biochim. Biophys. Acta, 1813(7):1360-1372.

[71]Wooley, J.A., 2008. Characteristics of thiamin and its relevance to the management of heart failure. Nutr. Clin. Pract., 23(5):487-493.

[72]Yan, J., Young, M.E., Cui, L., Lopaschuk, G.D., Liao, R., Tian, R., 2009. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation, 119(21):2818-2828.

[73]Zannad, F., McMurray, J.J., Krum, H., van Veldhuisen, D.J., Swedberg, K., Shi, H., Vincent, J., Pocock, S.J., Pitt, B., Group, E.H.S., 2011. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med., 364(1):11-21.

[74]Zhang, L., Lu, Y., Jiang, H., Zhang, L., Sun, A., Zou, Y., Ge, J., 2012. Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. J. Am. Coll. Cardiol., 59(10):913-922.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE