Full Text:   <3320>

CLC number: R-332

On-line Access: 2014-03-04

Received: 2013-05-22

Revision Accepted: 2013-08-28

Crosschecked: 2014-02-08

Cited: 0

Clicked: 5902

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.3 P.281-288

http://doi.org/10.1631/jzus.B1300147


Is there a role of TNFR1 in acute lung injury cases associated with extracorporeal circulation?*


Author(s):  Yu Zhao1, Chong-wei Zhang1, Wen-jing Zhou1, Jiao Chen1, Nan-fu Luo2, Li-na Gong2, Lei Du2, Jing Zhou1

Affiliation(s):  1. Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; more

Corresponding email(s):   zhoujinghuaxi@163.com

Key Words:  Extracorporeal circulation (ECC), Acute lung injury (ALI), Tumor necrosis factor receptor 1 (TNFR1), Tumor necrosis factor-&alpha, (TNF-&alpha, )


Yu Zhao, Chong-wei Zhang, Wen-jing Zhou, Jiao Chen, Nan-fu Luo, Li-na Gong, Lei Du, Jing Zhou. Is there a role of TNFR1 in acute lung injury cases associated with extracorporeal circulation?[J]. Journal of Zhejiang University Science B, 2014, 15(3): 281-288.

@article{title="Is there a role of TNFR1 in acute lung injury cases associated with extracorporeal circulation?",
author="Yu Zhao, Chong-wei Zhang, Wen-jing Zhou, Jiao Chen, Nan-fu Luo, Li-na Gong, Lei Du, Jing Zhou",
journal="Journal of Zhejiang University Science B",
volume="15",
number="3",
pages="281-288",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1300147"
}

%0 Journal Article
%T Is there a role of TNFR1 in acute lung injury cases associated with extracorporeal circulation?
%A Yu Zhao
%A Chong-wei Zhang
%A Wen-jing Zhou
%A Jiao Chen
%A Nan-fu Luo
%A Li-na Gong
%A Lei Du
%A Jing Zhou
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 3
%P 281-288
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300147

TY - JOUR
T1 - Is there a role of TNFR1 in acute lung injury cases associated with extracorporeal circulation?
A1 - Yu Zhao
A1 - Chong-wei Zhang
A1 - Wen-jing Zhou
A1 - Jiao Chen
A1 - Nan-fu Luo
A1 - Li-na Gong
A1 - Lei Du
A1 - Jing Zhou
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 3
SP - 281
EP - 288
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300147


Abstract: 
The signaling pathway for tumor necrosis factor-&alpha; (TNF-&alpha;) and its receptors is up-regulated during )%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>extracorporeal circulation (ECC), and recruits blood neutrophil into the lung tissue, which results in )%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>acute lung injury (ALI). In this study, we evaluated the role of )%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>tumor necrosis factor receptor 1 (TNFR1) in ECC-induced ALI by blocking TNF-α binding to TNFR1 with CAY10500. Anesthetized Sprague-Dawley (SD) rats were pretreated intravenously with phosphate buffered saline (PBS) or vehicle (0.3 ml ethanol IV) or CAY10500, and then underwent ECC for 2 h. The oxygenation index (OI) and pulmonary inflammation were assessed after ECC. OI was significantly decreased, while TNF-α and neutrophil in bronchoalveolar lavage fluid (BALF) and plasma TNF-α increased after ECC. Pretreatment of CAY10500 decreased plasma TNF-α level, but did not decrease TNF-α levels and neutrophil counts in BALF or improve OI. Lung histopathology showed significant alveolar congestion, infiltration of the leukocytes in the airspace, and increased thickness of the alveolar wall in all ECC-treated groups. CAY10500 pretreatment slightly reduced leukocyte infiltration in lungs, but did not change the wet/dry ratio in the lung tissue. Blocking TNF-α binding to TNFR1 by CAY10500 intravenously slightly mitigates pulmonary inflammation, but cannot improve the pulmonary function, indicating the limited role of TNFR1 pathway in circulating inflammatory cell in ECC-induced ALI.

肿瘤坏死因子受体1是否在体外循环相关的急性肺损伤病例中发挥作用?

研究目的:通过CAY10500阻断肿瘤坏死因子-α(TNF-α)与肿瘤坏死因子受体1(TNFR1)的结合,评估TNFR1在体外循环诱导的急性肺损伤中的作用。
创新要点:使用CAY10500静脉内注射预处理而阻断TNF-α与TNFR1的结合,并降低血浆TNF-α水平,以观察TNFR1对体外循环诱导的急性肺损伤的作用。
研究方法:用磷酸盐缓冲液(PBS)或载体或CAY10500静脉内预处理麻醉SD大鼠后,再进行2小时体外循环,诱导其发生急性肺损伤,并观察氧指数、肺部炎症、支气管肺泡灌洗液及其血浆中TNF-α和嗜中性粒细胞的含量。
重要结论:使用CAY10500静脉内注射预处理而阻断TNF-α与TNFR1的结合,只能略微减轻肺部炎症,但不能改善肺部功能,表明TNFR1通路在体外循环诱导的急性肺损伤的炎症细胞中作用有限。

关键词:体外循环;急性肺损伤;肿瘤坏死因子受体1;肿瘤坏死因子-α

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Allen, J.N., Herzyk, D.J., Allen, E.D., 1992. Human whole blood interleukin-1-β production: kinetics, cell source, and comparison with TNF-α. J Lab Clin Med, 119(5):538-546. 


[2] Berg, T., 2006. Inhibition of TNF-α signaling: divide and conquer. ChemMedChem, 1(7):687-688. 


[3] Burkhardt, J.K., Carrizosa, E., Shaffer, M.H., 2008. The actin cytoskeleton in T cell activation. Annu Rev Immunol, 26(1):233-259. 


[4] Carney, D.E., Lutz, C.J., Picone, A.L., 1999. Soluble tumor necrosis factor receptor prevents post-pump syndrome. J Surg Res, 83(2):113-121. 


[5] Doguet, F., Litzler, P.Y., Tamion, F., 2004. Changes in mesenteric vascular reactivity and inflammatory response after cardiopulmonary bypass in a rat model. Ann Thorac Surg, 77(6):2130-2137. 


[6] Drost, E.M., MacNee, W., 2002. Potential role of IL-8, platelet-activating factor and TNF-α in the sequestration of neutrophils in the lung: effects on neutrophil deformability, adhesion receptor expression, and chemotaxis. Eur J Immunol, 32(2):393-403. 


[7] Du, L., Zhou, J., Zhang, J., 2012. Actin filament re-organization is a key step in lung inflammation induced by systemic inflammatory response syndrome. Am J Respir Cell Mol Biol, 47(5):597-603. 


[8] He, M.M., Smith, A.S., Oslob, J.D., 2005. Small-molecule inhibition of TNF-α. Science, 310(5750):1022-1025. 


[9] Imai, Y., Kawano, T., Iwamoto, S., 1999. Intratracheal anti-tumor necrosis factor-α antibody attenuates ventilator-induced lung injury in rabbits. J Appl Physiol, 87(2):510-515. 


[10] Khimenko, P.L., Bagby, G.J., Fuseler, J., 1999. Tumor necrosis factor-α in ischemia and reperfusion injury in rat lungs. J Appl Physiol, 85(6):2005-2011. 

[11] Kotani, N., Hashimoto, H., Sessler, D.I., 2000. Neutrophil number and interleukin-8 and elastase concentrations in bronchoalveolar lavage fluid correlate with decreased arterial oxygenation after cardiopulmonary bypass. Anesth Analg, 90(5):1046-1051. 


[12] Li, T., Luo, N., Du, L., 2012. Early and marked up-regulation of TNF-α in acute respiratory distress syndrome after cardiopulmonary bypass. Front Med, 6(3):296-301. 


[13] Li, T., Luo, N., Du, L., 2013. Tumor necrosis factor-α plays an initiating role in extracorporeal circulation-induced acute lung injury. Lung, 191(2):207-214. 


[14] Markovic, N., McCaig, L.A., Stephen, J., 2009. Mediators released from LPS-challenged lungs induce inflammatory responses in liver vascular endothelial cells and neutrophilic leukocytes. Am J Physiol Gastrointest Liver Physiol, 297(6):G1066-G1076. 


[15] Mukhopadhyay, S., Hoidal, J.R., Mukherjee, T.K., 2006. Role of TNFα in pulmonary pathophysiology. Respir Res, 7(1):125


[16] Muth, H., Kreis, I., Zimmermann, R., 2005. Differential gene expression in activated monocyte-derived macrophages following binding of factor VIIa to tissue factor. Thromb Haemost, 94(5):1028-1034. 


[17] Ng, C.S., Wan, S., Yim, A.P., 2002. Pulmonary dysfunction after cardiac surgery. Chest, 121(4):1269-1277. 


[18] Roach, D.R., Bean, A.G., Demangel, C., 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol, 168(9):4620-4627. 


[19] Secher, T., Vasseur, V., Poisson, D.M., 2009. Crucial role of TNF receptors 1 and 2 in the control of polymicrobial sepsis. J Immunol, 182(12):7855-7864. 


[20] Sedgwick, J.D., Riminton, D.S., Cyster, J.G., 2000. Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today, 21(3):110-113. 


[21] Staton, G.W., Williams, W.H., Mahoney, E.M., 2005. Pulmonary outcomes of off-pump vs on-pump coronary artery bypass surgery in a randomized trial. Chest, 127(3):892-901. 


[22] Tao, K., An, Q., Lin, K., 2009. Which is better to preserve pulmonary function: short-term or prolonged leukocyte depletion during cardiopulmonary bypass?. J Thorac Cardiovasc Surg, 138(6):1385-1391. 


[23] Vicente-Manzanares, M., Sanchez-Madrid, F., 2004. Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol, 4(2):110-122. 


[24] Wehberg, K.E., Foster, A.H., Wise, R.M., 1996. Nitric oxide mediates fluid accumulation during cardiopulmonary bypass. J Thorac Cardiovasc Surg, 112(1):168-174. 


[25] Yende, S., Quasney, M.W., Tolley, E., 2003. Association of tumor necrosis factor gene polymorphisms and prolonged mechanical ventilation after coronary artery bypass surgery. Crit Care Med, 31(1):133-140. 


[26] Zhou, J., Luo, T., Rui, J., 2008. Changes of neutrophil functions after cardiopulmonary bypass: experiment with dogs. Zhonghua Yi Xue Za Zhi, (in Chinese),88(17):1206-1210. 


[27] Zhou, J., Wu, X.D., Lin, K., 2010. Blood hibernation: a novel strategy to inhibit systemic inflammation and coagulation induced by cardiopulmonary bypass. Chin Med J (Engl), 123(13):1741-1747. 



Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE