References
[1] Antoni, M.L., Mollema, S.A., Delgado, V., 2010. Prognostic importance of strain and strain rate after acute myocardial infarction.
Eur Heart J, 31(13):1640-1647.
[2] Assomull, R.G., Prasad, S.K., Lyne, J., 2006. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy.
J Am Coll Cardiol, 48(10):1977-1985.
[3] Banerjee, I., Fuseler, J.W., Price, R.L., 2007. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse.
Am J Physiol Heart Circ Physiol, 293(3):H1883-H1891.
[4] Berry, M.F., Engler, A.J., Woo, Y.J., 2006. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance.
Am J Physiol Heart Circ Physiol, 290(6):H2196-H2203.
[5] Beuckelmann, D.J., Nābauer, M., Erdmann, E., 1992. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure.
Circulation, 85(3):1046-1055.
[6] Biernacka, A., Frangogiannis, N.G., 2011. Aging and cardiac fibrosis.
Aging Dis, 2(2):158-173.
[7] Brown, R.A., Prajapati, R., McGrouther, D.A., 1998. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates.
J Cell Physiol, 175(3):323-332.
[8] Camelliti, P., Borg, T.K., Kohl, P., 2005. Structural and functional characterisation of cardiac fibroblasts.
Cardiovasc Res, 65(1):40-51.
[9] Carusi, A., Burrage, K., Rodriguez, B., 2012. Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology.
Am J Physiol Heart Circ Physiol, 303(2):H144-H155.
[10] Cherry, E.M., Fenton, F.H., 2011. Effects of boundaries and geometry on the spatial distribution of action potential duration in cardiac tissue.
J Theor Biol, 285(1):164-176.
[11] Chilton, L., Ohya, S., Freed, D., 2005. K
+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts.
Am J Physiol Heart Circ Physiol, 288(6):H2931-H2939.
[12] Clayton, R.H., Bernus, O., Cherry, E.M., 2011. Models of cardiac tissue electrophysiology: progress, challenges and open questions.
Prog Biophys Mol Biol, 104(1-3):22-48.
[13] Conrad, C.H., Brooks, W.W., Hayes, J.A., 1995. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat.
Circulation, 91(1):161-170.
[14] de Bakker, J.M., van Rijen, H.M., 2006. Continuous and discontinuous propagation in heart muscle.
J Cardiovasc Electrophysiol, 17(5):567-573.
[15] Eastwood, M., McGrouther, D.A., Brown, R.A., 1998. Fibroblast responses to mechanical forces.
Proc Inst Mech Eng H J Eng Med, 212(2):85-92.
[16] Iribe, G., Kohl, P., Noble, D., 2006. Modulatory effect of calmodulin-dependent kinase II (CaMKII) on sarcoplasmic reticulum Ca
2+ handling and interval-force relations: a modelling study.
Phil Trans R Soc A Math Phys Eng Sci, 364(1842):1107-1133.
[17] Jacquemet, V., Henriquez, C.S., 2008. Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model.
Am J Physiol Heart Circul Physiol, 294(5):H2040-H2052.
[18] John, B.T., Tamarappoo, B.K., Titus, J.L., 2004. Global remodeling of the ventricular interstitium in idiopathic myocardial fibrosis and sudden cardiac death.
Heart Rhythm, 1(2):141-149.
[19] Kamkin, A., Kiseleva, I., Wagner, K.D., 1999. Mechanically induced potentials in fibroblasts from human right atrium.
Exp Physiol, 84(2):347-356.
[20] Kerckhoffs, R.C.P., Healy, S.N., Usyk, T.P., 2006. Computational methods for cardiac electromechanics.
Proc IEEE, 94(4):769-783.
[21] Kerckhoffs, R.C.P., Omens, J.H., McCulloch, A.D., 2010. Ventricular dilation and electrical dyssynchrony synergistically increase regional mechanical nonuniformity but not mechanical dyssynchrony: a computational model.
Circ Heart Fail, 3(4):528-536.
[22] Kohl, P., 2003. Heterogeneous cell coupling in the heart: an electrophysiological role for fibroblasts.
Circul Res, 93(5):381-383.
[23] Kohl, P., Kamkin, A.G., Kiseleva, I.S., 1994. Mechanosensitive fibroblasts in the sino-atrial node region of rat heart: interaction with cardiomyocytes and possible role.
Exp Physiol, 79(6):943-956.
[24] Kuijpers, N.H., Hermeling, E., Bovendeerd, P.H., 2012. Modeling cardiac electromechanics and mechanoelectrical coupling in dyssynchronous and failing hearts: insight from adaptive computer models.
J Cardiovasc Transl Res, 5(2):159-169.
[25] MacCannell, K.A., Bazzazi, H., Chilton, L., 2007. A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts.
Biophys J, 92(11):4121-4132.
[26] Maleckar, M.M., Greenstein, J.L., Giles, W.R., 2009. Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization.
Biophys J, 97(8):2179-2190.
[27] Manabe, I., Shindo, T., Nagai, R., 2002. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy.
Circul Res, 91(12):1103-1113.
[28] Miragoli, M., Gaudesius, G., Rohr, S., 2006. Electrotonic modulation of cardiac impulse conduction by myofibroblasts.
Circul Res, 98(6):801-810.
[29] Miragoli, M., Salvarani, N., Rohr, S., 2007. Myofibroblasts induce ectopic activity in cardiac tissue.
Circul Res, 101(8):755-758.
[30] Nash, M.P., Panfilov, A.V., 2004. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
Prog Biophys Mol Biol, 85(2-3):501-522.
[31] Nickerson, D., Smith, N., Hunter, P., 2005. New developments in a strongly coupled cardiac electromechanical model.
Europace, 7(Suppl. 2):118-127.
[32] Niederer, S.A., Smith, N.P., 2008. An improved numerical method for strong coupling of excitation and contraction models in the heart.
Prog Biophys Mol Biol, 96(1-3):90-111.
[33] Niederer, S.A., Smith, N.P., 2009. The role of the Frank-Starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis.
PLoS Comput Biol, 5(4):e1000371
[34] Niederer, S.A., Hunter, P.J., Smith, N.P., 2006. A quantitative analysis of cardiac myocyte relaxation: a simulation study.
Biophys J, 90(5):1697-1722.
[35] Niederer, S.A., Plank, G., Chinchapatnam, P., 2011. Length-dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy.
Cardiovasc Res, 89(2):336-343.
[36] Pellman, J., Lyon, R.C., Sheikh, F., 2010. Extracellular matrix remodeling in atrial fibrosis: mechanisms and implications in atrial fibrillation.
J Mol Cell Cardiol, 48(3):461-467.
[37] Rice, J.J., Winslow, R.L., Hunter, W.C., 1999. Comparison of putative cooperative mechanisms in cardiac muscle: length dependence and dynamic responses.
Am J Physiol Heart Circul Physiol, 45(5):H1734-H1754.
[38] Rook, M.B., van Ginneken, A.C.G., de Jonge, B.E., 1992. Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs.
Am J Physiol Cell Physiol, 263(5):C959-C977.
[39] Rossi, M.A., 2001. Connective tissue skeleton in the normal left ventricle and in hypertensive left ventricular hypertrophy and chronic chagasic myocarditis.
Med Sci Monit Int Med J Exp Clin Res, 7(4):820-832.
[40] Sachse, F.B., Moreno, A.P., Abildskov, J.A., 2008. Electrophysiological modeling of fibroblasts and their interaction with myocytes.
Annals Biomed Eng, 36(1):41-56.
[41] Sachse, F.B., Moreno, A.P., Seemann, G., 2009. A model of electrical conduction in cardiac tissue including fibroblasts.
Ann Biomed Eng, 37(5):874-889.
[42] Shibukawa, Y., Chilton, E.L., MacCannell, K.A., 2005. K
+ currents activated by depolarization in cardiac fibroblasts.
Biophys J, 88(6):3924-3935.
[43] Shou, G.F., Xia, L., Jiang, M.F., 2011. Magnetocardiography simulation based on an electrodynamic heart model.
IEEE Trans Magn, 47(9):2224-2230.
[44] Spach, M.S., Heidlage, J.F., Dolber, P.C., 2007. Mechanism of origin of conduction disturbances in aging human atrial bundles: experimental and model study.
Heart Rhythm, 4(2):175-185.
[45] Tanaka, K., Zlochiver, S., Vikstrom, K.L., 2007. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure.
Circul Res, 101(8):839-847.
[46] ten Tusscher, K.H.W.J., Panfilov, A.V., 2003. Influence of nonexcitable cells on spiral breakup in two-dimensional and three-dimensional excitable media.
Phys Rev E Stat Nonlin Soft Matter Phys, 68(6):062902
[47] ten Tusscher, K.H.W.J., Panfilov, A.V., 2005. Wave propagation in excitable media with randomly distributed obstacles.
Multiscale Model Simul, 3(2):265-282.
[48] ten Tusscher, K.H.W.J., Panfilov, A.V., 2007. Influence of diffuse fibrosis on wave propagation in human ventricular tissue.
Europace, 9(Suppl. 6):vi38-vi45.
[49] ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., 2004. A model for human ventricular tissue.
Am J Physiol Heart Circ Physiol, 286(4):H1573-H1589.
[50] Trayanova, N.A., 2011. Whole-heart modeling: applications to cardiac electrophysiology and electromechanics.
Circul Res, 108(1):113-128.
[51] Trayanova, N.A., Constantino, J., Gurev, V., 2011. Electromechanical models of the ventricles.
Am J Physiol Heart Circ Physiol, 301(2):H279-H286.
[52] Usyk, T.P., McCulloch, A.D., 2003. Electromechanical model of cardiac resynchronization in the dilated failing heart with left bundle branch block.
J Electrocardiol, 36(Suppl. l):57-61.
[53] Usyk, T.P., McCulloch, A.D., 2003. Relationship between regional shortening and asynchronous electrical activation in a three-dimensional model of ventricular electromechanics.
J Cardiovasc Electrophysiol, 14(S10):S196-S202.
[54] Vasquez, C., Moreno, A.P., Berbari, E., 2004. Modeling fibroblast-mediated conduction in the ventricle.
, Computer in Cardiology 2004, 349-352. :349-352.
[55] Xia, L., Huo, M., Wei, Q., 2005. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
Phys Med Biol, 50(8):1901-1917.
[56] Xia, L., Huo, M., Wei, Q., 2006. Electrodynamic heart model construction and ECG simulation.
Meth Inf Med, 45(5):564-573.
[57] Xie, Y., Garfinkel, A., Weiss, J.N., 2009. Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models.
Am J Physiol Heart Circ Physiol, 297(2):H775-H784.
[58] Xie, Y., Garfinkel, A., Camelliti, P., 2009. Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: a computational study.
Heart Rhythm, 6(11):1641-1649.
[59] Yao, J.A., Gutstein, D.E., Liu, F., 2003. Cell coupling between ventricular myocyte pairs from connexin43-deficient murine hearts.
Circul Res, 93(8):736-743.
[60] Zlochiver, S., Munoz, V., Vikstrom, K.L., 2008. Electrotonic myofibroblast-to-myocyte coupling increases propensity to reentrant arrhythmias in two-dimensional cardiac monolayers.
Biophys J, 95(9):4469-4480.
Open peer comments: Debate/Discuss/Question/Opinion
<1>