References
[1] Bennet, W., Bjorkland, A., Sundberg, B., 2000. A comparison of fetal and adult porcine islets with regard to Galα (1,3)Gal expression and the role of human immunoglobulins and complement in islet cell cytotoxicity.
Transplantation, 69(8):1711-1717.
[2] Bloch, K., Assa, S., Lazard, D., 1999. Neonatal pig islets induce a lower T-cell response than adult pig islets in IDDM patients.
Transplantation, 67(5):748-752.
[3] Bottino, R., Balamurugan, A.N., Smetanka, C., 2007. Isolation outcome and functional characteristics of young and adult pig pancreatic islets for transplantation studies.
Xenotransplantation, 14(1):74-82.
[4] Cardona, K., Korbutt, G.S., Milas, Z., 2006. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways.
Nat Med, 12(3):304-306.
[5] Cardona, K., Milas, Z., Strobert, E., 2007. Engraftment of adult porcine islet xenografts in diabetic nonhuman primates through targeting of costimulation pathways.
Am J Transplant, 7(10):2260-2268.
[6] Casu, A., Bottino, R., Balamurugan, A.N., 2008. Metabolic aspects of pig-to-monkey (
Macaca fascicularis) islet transplantation: implications for translation into clinical practice.
Diabetologia, 51(1):120-129.
[7] Casu, A., Echeverri, G.J., Bottino, R., 2010. Insulin secretion and glucose metabolism in α1,3-galactosyltransferase knock-out pigs compared to wild-type pigs.
Xenotransplantation, 17(2):131-139.
[8] Cavanagh, T.J., Lakey, J.R., Wright, M.J., 1998. Identification of a pig strain with maximal islet mass.
Transplant Proc, 30(2):368
[9] Chen, Y., Stewart, J.M., Gunthart, M., 2014. Xenoantibody response to porcine islet cell transplantation using GTKO, CD55, CD59, and fucosyltransferase multiple transgenic donors.
Xenotransplantation, 21(3):244-253.
[10] Cooper, D.K., Hara, H., Ezzelarab, M., 2013. The potential of genetically-engineered pigs in providing an alternative source of organs and cells for transplantation.
J Biomed Res, 27(4):249-253.
[11] D'Apice, A.J., Cowan, P.J., 2008. Gene-modified pigs.
Xenotransplantation, 15(2):87-90.
[12] Denner, J., 2008. Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation?.
Arch Virol, 153(8):1421-1426.
[13] Diamond, L.E., Quinn, C.M., Martin, M.J., 2001. A human CD46 transgenic pig model system for the study of discordant xenotransplantation.
Transplantation, 71(1):132-142.
[14] Dor, F.J., Cheng, J., Alt, A., 2004. Galα1,3Gal expression on porcine pancreatic islets, testis, spleen, and thymus.
Xenotransplantation, 11(1):101-106.
[15] Dufrane, D., Gianello, P., 2008. Pig islet xenotransplantation into non-human primate model.
Transplantation, 86(6):753-760.
[16] Dufrane, D., Gianello, P., 2009. Pig islets for clinical islet xenotransplantation.
Curr Opin Nephrol Hypertens, 18(6):495-500.
[17] Dufrane, D., Goebbels, R.M., Fdilat, I., 2005. Impact of porcine islet size on cellular structure and engraftment after transplantation: adult versus young pigs.
Pancreas, 30(2):138-147.
[18] Dufrane, D., Goebbels, R.M., Guiot, Y., 2005. Is the expression of Gal-α1,3Gal on porcine pancreatic islets modified by isolation procedure?.
Transplant Proc, 37(1):455-457.
[19] Dufrane, D., D'hoore, W., Goebbels, R.M., 2006. Parameters favouring successful adult pig islet isolations for xenotransplantation in pig-to-primate models.
Xenotransplantation, 13(3):204-214.
[20] Dufrane, D., Goebbels, R.M., Gianello, P., 2010. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression.
Transplantation, 90(10):1054-1062.
[21] Ekser, B., Cooper, D.K., 2010. Overcoming the barriers to xenotransplantation: prospects for the future.
Expert Rev Clin Immunol, 6(2):219-230.
[22] Ekser, B., Bianchi, J., Ball, S., 2012. Comparison of hematologic, biochemical, and coagulation parameters in α1,3-galactosyltransferase gene-knockout pigs, wild-type pigs, and four primate species.
Xenotransplantation, 19(6):342-354.
[23] Elliott, R.B., 2011. Towards xenotransplantation of pig islets in the clinic.
Curr Opin Organ Transplant, 16(2):195-200.
[24] Elliott, R.B., Escobar, L., Tan, P.L., 2007. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation.
Xenotransplantation, 14(2):157-161.
[25] Eventov-Friedman, S., Tchorsh, D., Katchman, H., 2006. Embryonic pig pancreatic tissue transplantation for the treatment of diabetes.
PLoS Med, 3(7):e215
[26] Gazda, L.S., Adkins, H., Bailie, J.A., 2005. The use of pancreas biopsy scoring provides reliable porcine islet yields while encapsulation permits the determination of microbiological safety.
Cell Transplant, 14(7):427-439.
[27] Georges, P., Muirhead, R.P., Williams, L., 2002. Comparison of size, viability, and function of fetal pig islet-like cell clusters after digestion using collagenase or liberase.
Cell Transplant, 11(6):539-545.
[28] Gray, D.W., Sudhakaran, N., Titus, T.T., 2004. Development of a novel digestion chamber for human and porcine islet isolation.
Transplant Proc, 36(4):1135-1138.
[29] Groth, C.G., Korsgren, O., Tibell, A., 1994. Transplantation of porcine fetal pancreas to diabetic patients.
Lancet, 344(8934):1402-1404.
[30] Hardikar, A.A., Wang, X.Y., Williams, L.J., 2002. Functional maturation of fetal porcine β-cells by glucagon-like peptide 1 and cholecystokinin.
Endocrinology, 143(9):3505-3514.
[31] Hecht, G., Eventov-Friedman, S., Rosen, C., 2009. Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model.
PNAS, 106(21):8659-8664.
[32] Heiser, A., Ulrichs, K., Muller-Ruchholtz, W., 1994. Influence of porcine strain, age, and pH of the isolation medium on porcine pancreatic islet isolation success.
Transplant Proc, 26(2):618-620.
[33] Hering, B.J., Wijkstrom, M., Graham, M.L., 2006. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates.
Nat Med, 12(3):301-303.
[34] Hilling, D.E., Rijkelijkhuizen, J.K., Tons, H.A., 2010. Porcine islet isolation outcome is not affected by the amount and distribution of collagen in the pancreas.
Xenotransplantation, 17(3):250-255.
[35] Hu, Q., Liu, Z., Zhu, H., 2014. Pig islets for islet xenotransplantation: current status and future perspectives.
Chin Med J (Engl), 127(2):370-377.
[36] Inoue, K., Gu, Y., Shinohara, S., 1992. Isolation of adult pig islet.
In vitro assessment and xenotransplantation.
Int J Pancreatol, 12(2):173-180.
[37] Irgang, M., Laue, C., Velten, F., 2008. No evidence for PERV release by islet cells from German landrace pigs.
Ann Transplant, 13(4):59-66.
[38] Jiang, X., Qian, T., Linn, T., 2012. Islet isolation and purification from inbred Wuzhishan miniature pigs.
Xenotransplantation, 19(3):159-165.
[39] Kim, H.I., Lee, S.Y., Jin, S.M., 2009. Parameters for successful pig islet isolation as determined using 68 specific-pathogen-free miniature pigs.
Xenotransplantation, 16(1):11-18.
[40] Kim, J.H., Kim, H.I., Lee, K.W., 2007. Influence of strain and age differences on the yields of porcine islet isolation: extremely high islet yields from SPF CMS miniature pigs.
Xenotransplantation, 14(1):60-66.
[41] Kinasiewicz, J., Antosiak-Iwanska, M., Sabat, M., 2011. Histomorphometrical analysis of porcine islets of Langerhans.
Transplant Proc, 43(8):3105-3106.
[42] Kirchhof, N., Hering, B.J., Geiss, V., 1994. Evidence for breed-dependent differences in porcine islets of Langerhans.
Transplant Proc, 26(2):616-617.
[43] Klymiuk, N., van Buerck, L., Bahr, A., 2012. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice.
Diabetes, 61(6):1527-1532.
[44] Komoda, H., Miyagawa, S., Kubo, T., 2004. A study of the xenoantigenicity of adult pig islets cells.
Xenotransplantation, 11(3):237-246.
[45] Komoda, H., Miyagawa, S., Omori, T., 2005. Survival of adult islet grafts from transgenic pigs with
N-acetylglucosaminyltransferase-III (GnT-III) in cynomolgus monkeys.
Xenotransplantation, 12(3):209-216.
[46] Korbutt, G.S., 2009. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes—Chapter 3: pig islet product manufacturing and release testing.
Xenotransplantation, 16(4):223-228.
[47] Korbutt, G.S., Elliott, J.F., Ao, Z., 1996. Large scale isolation, growth, and function of porcine neonatal islet cells.
J Clin Invest, 97(9):2119-2129.
[48] Koulmanda, M., Qipo, A., Smith, R.N., 2003. Pig islet xenografts are resistant to autoimmune destruction by non-obese diabetic recipients after anti-CD4 treatment.
Xenotransplantation, 10(2):178-184.
[49] Krickhahn, M., Buhler, C., Meyer, T., 2002. The morphology of islets within the porcine donor pancreas determines the isolation result: successful isolation of pancreatic islets can now be achieved from young market pigs.
Cell Transplant, 11(8):827-838.
[50] le Bas-Bernardet, S., Tillou, X., Poirier, N., 2011. Xenotransplantation of galactosyl-transferase knockout, CD55, CD59, CD39, and fucosyl-transferase transgenic pig kidneys into baboons.
Transplant Proc, 43(9):3426-3430.
[51] Lee, J.I., Shin, J.S., Jung, W.Y., 2013. Porcine islet adaptation to metabolic need of monkeys in pig-to-monkey intraportal islet xenotransplantation.
Transplant Proc, 45(5):1866-1868.
[52] Liu, D., Kobayashi, T., Onishi, A., 2007. Relation between human decay-accelerating factor (hDAF) expression in pig cells and inhibition of human serum anti-pig cytotoxicity: value of highly expressed hDAF for xenotransplantation.
Xenotransplantation, 14(1):67-73.
[53] Mandel, T.E., Koulmanda, M., Cozzi, E., 1997. Transplantation of normal and DAF-transgenic fetal pig pancreas into cynomolgus monkeys.
Transplant Proc, 29(1-2):940
[54] Meyer, T., Czub, S., Chodnewska, I., 1997. Expression pattern of extracellular matrix proteins in the pancreas of various domestic pig breeds, the Goettingen Minipig and the Wild Boar.
Ann Transplant, 2(3):17-26.
[55] Meyer, T., Buhler, C., Czub, S., 1998. Selection of donor pigs for pancreatic islet transplantation may depend on the expression level of connective tissue proteins in the islet capsule.
Transplant Proc, 30(5):2471-2473.
[56] Mueller, N.J., Takeuchi, Y., Mattiuzzo, G., 2011. Microbial safety in xenotransplantation.
Curr Opin Organ Transplant, 16(2):201-206.
[57] Mundwiler, K.E., Lamberti, F.V., Hill, R.S., 1994. Rapid and inexpensive method for the quantitative assessment of donor pancreata for islet isolation.
Transplant Proc, 26(6):3427
[58] Nagaraju, S., Bottino, R., Wijkstrom, M., 2013. Islet xenotransplantation from genetically engineered pigs.
Curr Opin Organ Transplant, 18(6):695-702.
[59] Nielsen, T.B., Yderstraede, K.B., Beck-Nielsen, H., 2002. Isolation, transplantation, and functional studies of adult porcine islets of Langerhans.
Comp Med, 52(2):127-135.
[60] Nielsen, T.B., Yderstraede, K.B., Schroder, H.D., 2003. Functional and immunohistochemical evaluation of porcine neonatal islet-like cell clusters.
Cell Transplant, 12(1):13-25.
[61] Nilsson, B., 2008. The instant blood-mediated inflammatory reaction in xenogeneic islet transplantation.
Xenotransplantation, 15(2):96-98.
[62] O'Neil, J.J., Stegemann, J.P., Nicholson, D.T., 2001. The isolation and function of porcine islets from market weight pigs.
Cell Transplant, 10(3):235-246.
[63] Omori, T., Nishida, T., Komoda, H., 2006. A study of the xenoantigenicity of neonatal porcine islet-like cell clusters (NPCC) and the efficiency of adenovirus-mediated DAF (CD55) expression.
Xenotransplantation, 13(5):455-464.
[64] Patience, C., Switzer, W.M., Takeuchi, Y., 2001. Multiple groups of novel retroviral genomes in pigs and related species.
J Virol, 75(6):2771-2775.
[65] Potter, K.J., Abedini, A., Marek, P., 2010. Islet amyloid deposition limits the viability of human islet grafts but not porcine islet grafts.
PNAS, 107(9):4305-4310.
[66] Prabhakaran, S., Hering, B.J., 2008. What strain of pig should be used?.
Xenotransplantation, 15(2):83-86.
[67] Rajotte, R.V., 2008. Isolation and assessment of islet quality.
Xenotransplantation, 15(2):93-95.
[68] Ramsoondar, J., Vaught, T., Ball, S., 2009. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs.
Xenotransplantation, 16(3):164-180.
[69] Rayat, G.R., Rajotte, R.V., Hering, B.J., 2003.
In vitro and
in vivo expression of Galα-(1,3)Gal on porcine islet cells is age dependent.
J Endocrinol, 177(1):127-135.
[70] Ricordi, C., Socci, C., Davalli, A.M., 1990. Isolation of the elusive pig islet.
Surgery, 107(6):688-694.
[71] Rijkelijkhuizen, J.K., van der Burg, M.P., Tons, A., 2006. Pretransplant culture selects for high-quality porcine islets.
Pancreas, 32(4):403-407.
[72] Rood, P.P., Buhler, L.H., Bottino, R., 2006. Pig-to-nonhuman primate islet xenotransplantation: a review of current problems.
Cell Transplant, 15(2):89-104.
[73] Sabat, M., Godlewska, E., Kinasiewicz, J., 2003. Assessment of some porcine strains as donors of islets of Langerhans.
Transplant Proc, 35(6):2343-2344.
[74] Semaan, M., Kaulitz, D., Petersen, B., 2012. Long-term effects of PERV-specific RNA interference in transgenic pigs.
Xenotransplantation, 19(2):112-121.
[75] Shapiro, A.M., Lakey, J.R., Ryan, E.A., 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen.
N Engl J Med, 343(4):230-238.
[76] Sӧderlund, J., Wennberg, L., Castaños-Velez, E., 1999. Fetal porcine islet-like cell clusters transplanted to cynomolgus monkeys: an immunohistochemical study.
Transplantation, 67(6):784-791.
[77] Stendahl, J.C., Kaufman, D.B., Stupp, S.I., 2009. Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation.
Cell Transplant, 18(1):1-12.
[78] Tai, H.C., Ezzelarab, M., Hara, H., 2007. Progress in xenotransplantation following the introduction of gene-knockout technology.
Transpl Int, 20(2):107-117.
[79] Tchorsh-Yutsis, D., Hecht, G., Aronovich, A., 2009. Pig embryonic pancreatic tissue as a source for transplantation in diabetes: transient treatment with anti-LFA1, anti-CD48, and FTY720 enables long-term graft maintenance in mice with only mild ongoing immunosuppression.
Diabetes, 58(7):1585-1594.
[80] Tchorsh-Yutsis, D., Zlotnikov Klionsky, Y., Bachar-Lustig, E., 2011. Embryonic pig pancreatic tissue for the treatment of diabetes: potential role of immune suppression with “off-the-shelf” third-party regulatory T cells.
Transplantation, 91(4):398-405.
[81] Thompson, P., Cardona, K., Russell, M., 2011. CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates.
Am J Transplant, 11(5):947-957.
[82] Thompson, P., Badell, I.R., Lowe, M., 2011. Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function.
Am J Transplant, 11(12):2593-2602.
[83] Thompson, P., Badell, I.R., Lowe, M., 2012. Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival.
Am J Transplant, 12(7):1765-1775.
[84] Trivedi, N., Hollister-Lock, J., Lopez-Avalos, M.D., 2001. Increase in β-cell mass in transplanted porcine neonatal pancreatic cell clusters is due to proliferation of β-cells and differentiation of duct cells.
Endocrinology, 142(5):2115-2122.
[85] Ulrichs, K., Bosss, M., Heiser, A., 1995. Histomorphological characteristics of the porcine pancreas as a basis for the isolation of islets of Langerhans.
Xenotransplantation, 2(3):176-187.
[86] Valdes-Gonzalez, R.A., White, D.J., Dorantes, L.M., 2007. Three-yr follow-up of a type 1 diabetes mellitus patient with an islet xenotransplant.
Clin Transplant, 21(3):352-357.
[87] Valdes-Gonzalez, R., Dorantes, L.M., Bracho-Blanchet, E., 2010. No evidence of porcine endogenous retrovirus in patients with type 1 diabetes after long-term porcine islet xenotransplantation.
J Med Virol, 82(2):331-334.
[88] van Deijnen, J.H., Hulstaert, C.E., Wolters, G.H., 1992. Significance of the peri-insular extracellular matrix for islet isolation from the pancreas of rat, dog, pig, and man.
Cell Tissue Res, 267(1):139-146.
[89] van der Laan, L.J., Lockey, C., Griffeth, B.C., 2000. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice.
Nature, 407(6800):90-94.
[90] van der Windt, D.J., Bottino, R., Casu, A., 2009. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets.
Am J Transplant, 9(12):2716-2726.
[91] van der Windt, D.J., Bottino, R., Kumar, G., 2012. Clinical islet xenotransplantation: how close are we?.
Diabetes, 61(12):3046-3055.
[92] Wang, W., Mo, Z., Ye, B., 2011. A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients.
J Central South Univ (Med Sci), 36(12):1134-1140.
[93] Yeom, H.J., Koo, O.J., Yang, J., 2012. Generation and characterization of human heme oxygenase-1 transgenic pigs.
PLoS ONE, 7(10):e46646
[94] Yonekawa, Y., Matsumoto, S., Okitsu, T., 2005. Effective islet isolation method with extremely high islet yields from adult pigs.
Cell Transplant, 14(10):757-762.
[95] Yoon, K.H., Quickel, R.R., Tatarkiewicz, K., 1999. Differentiation and expansion of β cell mass in porcine neonatal pancreatic cell clusters transplanted into nude mice.
Cell Transplant, 8(6):673-689.
[96] Zhu, H., Yu, L., Wang, B., 2012. Progress in isolation and purification of porcine islets.
Chin J Reparat Reconstr Surg, (in Chinese),26(8):1012-1016.
Open peer comments: Debate/Discuss/Question/Opinion
<1>