Full Text:   <2877>

Summary:  <2013>

CLC number: Q819

On-line Access: 2014-12-03

Received: 2014-06-12

Revision Accepted: 2014-10-09

Crosschecked: 2014-11-17

Cited: 2

Clicked: 5104

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Zhong-wei LIU

http://orcid.org/0000-0002-3232-7863

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.12 P.1013-1022

http://doi.org/10.1631/jzus.B1400163


Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor*


Author(s):  Zhong-wei Liu1, Wen-qiang Li2, Jun-kui Wang1, Xian-cang Ma3, Chen Liang4, Peng Liu5, Zheng Chu5, Yong-hui Dang5,6,7

Affiliation(s):  1. Department of Cardiology, the Third Affiliated Hospital of Xian Jiaotong University, Xian 710068, China; more

Corresponding email(s):   liuzhongweicn@gmail.com

Key Words:  Zirconium oxide, Ceramic foam, Glial cell line-derived neurotrophic factor (GDNF), Parkinson&rsquo, s disease


Share this article to: More |Next Article >>>

Zhong-wei Liu, Wen-qiang Li, Jun-kui Wang, Xian-cang Ma, Chen Liang, Peng Liu, Zheng Chu, Yong-hui Dang. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor[J]. Journal of Zhejiang University Science B, 2014, 15(12): 1013-1022.

@article{title="Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor",
author="Zhong-wei Liu, Wen-qiang Li, Jun-kui Wang, Xian-cang Ma, Chen Liang, Peng Liu, Zheng Chu, Yong-hui Dang",
journal="Journal of Zhejiang University Science B",
volume="15",
number="12",
pages="1013-1022",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400163"
}

%0 Journal Article
%T Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor
%A Zhong-wei Liu
%A Wen-qiang Li
%A Jun-kui Wang
%A Xian-cang Ma
%A Chen Liang
%A Peng Liu
%A Zheng Chu
%A Yong-hui Dang
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 12
%P 1013-1022
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400163

TY - JOUR
T1 - Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor
A1 - Zhong-wei Liu
A1 - Wen-qiang Li
A1 - Jun-kui Wang
A1 - Xian-cang Ma
A1 - Chen Liang
A1 - Peng Liu
A1 - Zheng Chu
A1 - Yong-hui Dang
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 12
SP - 1013
EP - 1022
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400163


Abstract: 
This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for parkinson&rsquo;s disease treatment.

氧化锆陶瓷泡沫:一种有望大规模生产GDNF的生物支持材料

研究目的:探讨氧化锆陶瓷泡沫细胞培养体系在胶质细胞源性神经营养因子(GDNF)生产方面的潜在用途。
创新要点:运用氧化锆陶瓷泡沫构建神经胶质细胞3D培养体系并测定该体系,该体系GDNF的产量明显优于传统的细胞培养体系。
研究方法:将原代神经胶质细胞种植于氧化锆陶瓷泡沫3D培养体系中,采用四唑盐(MTT)比色法对其生物相容性进行观察;采用扫描电子显微镜观察该体系神经胶质细胞形态;检测DNA含量以评估细胞增殖情况;采用酶联免疫吸附测定法(ELISA)检测该体系GDNF的产量;采用实时定量聚合酶链式反应(PCR)及免疫印迹试验(Western blotting)对胶质细胞中产生GDNF的信号通路激活情况进行观察。
重要结论:氧化锆陶瓷泡沫生物相容性好,由其构建的3D培养体系的GDNF产量明显优于传统2D培养体系。
氧化锆;陶瓷泡沫;帕金森病

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

References

[1] Bakshi, A., Shimizu, S., Keck, C.A., 2006. Neural progenitor cells engineered to secrete GDNF show enhanced survival, neuronal differentiation and improve cognitive function following traumatic brain injury. Eur J Neurosci, 23(8):2119-2134. 


[2] Beohar, N., Rapp, J., Pandya, S., 2010. Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol, 56(16):1287-1297. 


[3] Burke, R.E., 2006. GDNF as a candidate striatal target-derived neurotrophic factor for the development of substantia nigra dopamine neurons. Parkinsons Disease and Related Disorders, Springer-Verlag/Wien,:41-45. 


[4] Cho, K.S., Park, S.H., Joo, S.H., 2010. The effects of IL-32 on the inflammatory activation of cultured rat primary astrocytes. Biochem Biophys Res Commun, 402(1):48-53. 


[5] Elliot, M.J., Maini, R.N., Feldmann, M., 2008. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor α. Arthritis Rheum, 58(S2):S92-S101. 


[6] Foltynie, T., Kahan, J., 2013. Parkinson’s disease: an update on pathogenesis and treatment. J Neurol, 260(5):1433-1440. 


[7] Gill, S.S., Patel, N.K., Hotton, G.R., 2003. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med, 9(5):589-595. 


[8] Golan, M., Schreiber, G., Avissar, S., 2011. Antidepressants elevate GDNF expression and release from C6 glioma cells in a β-arrestin1-dependent, CREB interactive pathway. Int J Neuropsychopharmacol, 14(10):1289-1300. 


[9] Grundstrm, E., Lindholm, D., Johansson, A., 2000. GDNF but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis. NeuroReport, 11(8):1781-1783. 


[10] Hebb, A.O., Hebb, K., Ramachandran, A.C., 2003. Glial cell line-derived neurotrophic factor-supplemented hibernation of fetal ventral mesencephalic neurons for transplantation in Parkinson disease: long-term storage. J Neurosurg, 98(5):1078-1083. 


[11] Heckmann, L., Fiedler, J., Mattes, T., 2008. Interactive effects of growth factors and three-dimensional scaffolds on multipotent mesenchymal stromal cells. Biotechnol Appl Biochem, 49(3):185-194. 


[12] Hidalgo-Figueroa, M., Bonilla, S., Gutierrez, F., 2012. GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. J Neurosci, 32(3):864-872. 


[13] Hisaoka, K., Maeda, N., Tsuchioka, M., 2008. Antidepressants induce acute CREB phosphorylation and CRE-mediated gene expression in glial cells: a possible contribution to GDNF production. Brain Res, 1196:53-58. 


[14] Lang, A.E., Gill, S., Patel, N.K., 2006. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol, 59(3):459-466. 


[15] Li, Z., Cui, Z., 2014. Three-dimensional perfused cell culture. Biotechnol Adv, 32(2):243-254. 


[16] Lo, W.C., Hsu, C.H., Wu, A.T., 2008. A novel cell-based therapy for contusion spinal cord injury using GDNF-delivering NIH3T3 cells with dual reporter genes monitored by molecular imaging. J Nucl Med, 49(9):1512-1519. 


[17] Matsushita, Y., Nakajima, K., Tohyama, Y., 2008. Activation of microglia by endotoxin suppresses the secretion of glial cell line-derived neurotrophic factor (GDNF) through the action of protein kinase c α (PKCα) and mitogen-activated protein kinases (MAPKs). J Neurosci Res, 86(9):1959-1971. 


[18] Minnich, J.E., Mann, S.L., Stock, M., 2010. Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects cortical neurons from dying following a traumatic brain injury. Restor Neurol Neurosci, 28(3):293-309. 


[19] Nielsen, J., Gotfryd, K., Li, S., 2009. Role of glial cell line-derived neurotrophic factor (GDNF)-neural cell adhesion molecule (NCAM) interactions in induction of neurite outgrowth and identification of a binding site for ncam in the heel region of GDNF. J Neurosci, 29(36):11360-11376. 


[20] Ortiz-Ortiz, M.A., Moran, J.M., Ruiz-Mesa, L.M., 2011. Protective effect of the glial cell line-derived neurotrophic factor (GDNF) on human mesencephalic neuron-derived cells against neurotoxicity induced by paraquat. Environ Toxicol Pharmacol, 31(1):129-136. 


[21] Parsadanian, A., Pan, Y., Li, W., 2006. Astrocyte-derived transgene GDNF promotes complete and long-term survival of adult facial motoneurons following avulsion and differentially regulates the expression of transcription factors of AP-1 and ATF/CREB families. Exp Neurol, 200(1):26-37. 


[22] Patel, N.K., Bunnage, M., Plaha, P., 2005. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol, 57(2):298-302. 


[23] Sale, P., de Pandis, M.F., Vimercati, S.L., 2013. The relation between Parkinson’s disease and ageing. Comparison of the gait patterns of young Parkinson’s disease subjects with healthy elderly subjects. Eur J Phys Rehabil Med, 49(2):161-167. 


[24] Schenck, M., Borgermann, C., vom Dorp, F., 2007. Proapoptotic antibodies as new anticancer drugs. Der Urologe, (in German),46(9):1262-1265. 


[25] Shingo, T., Date, I., Yoshida, H., 2002. Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson’s disease. J Neurosci Res, 69(6):946-954. 


[26] Sun, M., Kong, L., Wang, X., 2005. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Res, 1052(2):119-129. 


[27] Tanaka, Y., Ogasawara, T., Asawa, Y., 2008. Growth factor contents of autologous human sera prepared by different production methods and their biological effects on chondrocytes. Cell Biol Int, 32(5):505-514. 


[28] Tokutake, T., Ishikawa, A., Yoshimura, N., 2014. Clinical and neuroimaging features of patient with early-onset Parkinson’s disease with dementia carrying SNCA p.G51d mutation. Parkinsonism Relat Disord, 20(2):262-264. 


[29] von Frenckell, C., Malaise, M.G., 2012. Targeted therapy in inflammatory disease: cytokines. Rev Med Liege, 67:22-28. 


[30] Wu, X., Chen, P.S., Dallas, S., 2008. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol, 11(8):1123-1134. 


[31] Yasuhara, T., Shingo, T., Muraoka, K., 2005. Early transplantation of an encapsulated glial cell line-derived neurotrophic factor-producing cell demonstrating strong neuroprotective effects in a rat model of Parkinson disease. J Neurosurg, 102(1):80-89. 


[32] Yasuhara, T., Shingo, T., Date, I., 2007. Glial cell line-derived neurotrophic factor (GDNF) therapy for Parkinson’s disease. Acta Med Okayama, 61(2):51-56. 


[33] Zesiewicz, T.A., Sullivan, K.L., Hauser, R.A., 2007. Levodopa-induced dyskinesia in Parkinson’s disease: epidemiology, etiology, and treatment. Curr Neurol Neurosci Rep, 7(4):302-310. 


[34] Zuo, D.Q., Cai, Z.D., 2013. Progress in three-dimensional cell culture techniques and its application in bone tumor research. Chin J Oncol, (in Chinese),35(9):641-644. 


Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE