Full Text:   <1029>

Summary:  <483>

CLC number: S634.3

On-line Access: 2015-08-04

Received: 2014-12-29

Revision Accepted: 2015-05-05

Crosschecked: 2015-07-09

Cited: 4

Clicked: 1957

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yun-xiang Zang

http://orcid.org/0000-0002-3505-7539

Zhu-jun Zhu

http://orcid.org/0000-0001-8551-7751

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.8 P.696-708

http://doi.org/10.1631/jzus.B1400370


Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation


Author(s):  Yun-xiang Zang, Jia-li Ge, Ling-hui Huang, Fei Gao, Xi-shan Lv, Wei-wei Zheng, Seung-beom Hong, Zhu-jun Zhu

Affiliation(s):  1Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Research Center of Bio-Breeding Industry, School of Agricultural and Food Science, Zhejiang A & F University, Lin’an 311300, China; more

Corresponding email(s):   zhengww@zafu.edu.cn, zhuzj@zafu.edu.cn

Key Words:  Chinese cabbage, Methyl jasmonate, Salicylic acid, Glucosinolate, Interactive effect


Yun-xiang Zang, Jia-li Ge, Ling-hui Huang, Fei Gao, Xi-shan Lv, Wei-wei Zheng, Seung-beom Hong, Zhu-jun Zhu. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation[J]. Journal of Zhejiang University Science B, 2015, 16(8): 696-708.

@article{title="Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation",
author="Yun-xiang Zang, Jia-li Ge, Ling-hui Huang, Fei Gao, Xi-shan Lv, Wei-wei Zheng, Seung-beom Hong, Zhu-jun Zhu",
journal="Journal of Zhejiang University Science B",
volume="16",
number="8",
pages="696-708",
year="2015",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1400370"
}

%0 Journal Article
%T Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation
%A Yun-xiang Zang
%A Jia-li Ge
%A Ling-hui Huang
%A Fei Gao
%A Xi-shan Lv
%A Wei-wei Zheng
%A Seung-beom Hong
%A Zhu-jun Zhu
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 8
%P 696-708
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1400370

TY - JOUR
T1 - Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation
A1 - Yun-xiang Zang
A1 - Jia-li Ge
A1 - Ling-hui Huang
A1 - Fei Gao
A1 - Xi-shan Lv
A1 - Wei-wei Zheng
A1 - Seung-beom Hong
A1 - Zhu-jun Zhu
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 8
SP - 696
EP - 708
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1400370


Abstract: 
glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

茉莉酸甲酯与水杨酸诱导的大白菜叶片与根系硫苷含量系统性变化研究

目的:通过单独或混合施用茉莉酸甲酯与水杨酸,研究两者在诱导大白菜硫苷合成方面的差异及其相互作用。
创新点:试验中,首次通过混合喷施或灌施茉莉酸甲酯与水杨酸,研究两者在诱导大白菜硫苷合成过程中的相互作用。
方法:试验过程中采用高效液相色谱法分析各硫苷组分的具体含量,为分析茉莉酸甲酯与水杨酸单独或混合施用在诱导大白菜硫苷合成过程中的作用奠定了基础。
结论:茉莉酸甲酯与水杨酸处理后,大白菜根系比叶片积累更多的硫苷,吲哚族硫苷比其他种类的硫苷积累更快;茉莉酸甲酯诱导硫苷合成的效果好于水杨酸,而且诱导时间更长;茉莉酸甲酯与水杨酸在诱导大白菜根系硫苷合成过程中具有反协同效应。

关键词:大白菜;硫苷;茉莉酸甲酯;水杨酸

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Agerbirk, N., de Vos, M., Kim, J.H., et al., 2009. Indole glucosinolate breakdown and its biological effects. Phytochem. Rev., 8(1):101-120.

[2]Agrawal, A.A., Kurashige, N.S., 2003. A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J. Chem. Ecol., 29(6):1403-1415.

[3]Akula, R., Ravishankar, G.A., 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav., 6(11):1720-1731.

[4]Bednarek, P., Pislewska-Bednarek, M., Svatos, A., et al., 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323(5910):101-106.

[5]Beekwilder, J., van Leeuwen, W., van Dam, N.M., et al., 2008. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE, 3(4):e2068.

[6]Borgen, B.H., Thangstad, O.P., Ahuja, I., et al., 2010. Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds. J. Exp. Bot., 61(6):1683-1697.

[7]Brader, G., Mikkelsen, M.D., Halkier, B.A., et al., 2006. Altering glucosinolate profiles modulates disease resistance in plants. Plant J., 46(5):758-767.

[8]Burow, M., Müller, R., Gershenzon, J., et al., 2006. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol., 32(11):2333-2349.

[9]Buxdorf, K., Yaffe, H., Barda, O., et al., 2013. The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS ONE, 8(8):e70771.

[10]Cipollini, D., Enright, S., Traw, M.B., et al., 2004. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol. Ecol., 13(6):1643-1653.

[11]Clay, N.K., Adio, A.M., Denoux, C., et al., 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323(5910):95-101.

[12]del Carmen Martínez-Ballesta, M., Moreno, D.A., Carvajal, M., 2013. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci., 14(6):11607-11625.

[13]Fan, J., Crooks, C., Creissen, G., et al., 2011. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science, 331(6021):1185-1188.

[14]Flors, V., Ton, J., van Doorn, R., et al., 2008. Interplay between JA, SA and ABA signaling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J., 54(1):81-92.

[15]Fritz, V.A., Justen, V.L., Bode, A.M., et al., 2010. Glucosinolate enhancement in cabbage induced by jasmonic acid application. HortScience, 45:1188-1191.

[16]Glatt, H., Baasanjav-Gerber, C., Schumacher, F., et al., 2011. 1-Methoxy-3-indolylmethyl glucosinolate, a potent genotoxicant in bacterial and mammalian cells: mechanisms of bioactivation. Chem. Biol. Interact., 192(1-2):81-86.

[17]Kachroo, P., Kachroo, A., 2013. The role of salicylic acid and jasmonic acid in plant immunity. In: Sessa, G. (Ed.), Molecular Plant Immunity, 1st Ed. John Wiley & Sons, Inc., p.55-71.

[18]Kiddle, G.A., Doughty, K.J., Wallsgrove, R.M., 1994. Salicylic acid-induced accumulation of glucosinolates in oilseed rape (Brassica napus L.) leaves. J. Exp. Bot., 45(9):1343-1346.

[19]Kim, J.H., Jander, G., 2007. Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J., 49(6):1008-1019.

[20]Kim, J.H., Lee, B.W., Schroeder, F.C., et al., 2008. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J., 54(6):1015-1026.

[21]Loivamäki, M., Holopainen, J.K., Nerg, A.M., 2004. Chemical changes induced by methyl jasmonate in oilseed rape grown in the laboratory and in the field. J. Agric. Food Chem., 52(25):7607-7613.

[22]Lund, E., 2003. Non-nutritive bioactive constituents of plants: dietary sources and health benefits of glucosinolates. Int. J. Vitam. Nutr. Res., 73(2):135-143.

[23]Mewis, I., Appel, H.M., Hom, A., et al., 2005. Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol., 138(2):1149-1162.

[24]Mikkelsen, M.D., Petersen, B.L., Glawischnig, E., et al., 2003. Modulation of CYP79 genes and glucosinolate profile in Arabidopsis by defence signaling pathways. Plant Physiol., 131(1):298-308.

[25]Müller, R., de Vos, M., Sun, J.Y., et al., 2010. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J. Chem. Ecol., 36(8):905-913.

[26]Mumm, R., Burow, M., Bukovinszkine'kiss, G., et al., 2008. Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Pieris rapae. J. Chem. Ecol., 34(10):1311-1321.

[27]Osbourn, A.E., 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell, 8(10):1821-1831.

[28]Pérez-Balibrea, S., Moreno, D.A., García-Viguera, C., 2011. Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chem., 129(1):35-44.

[29]Pieterse, C.M.J., Dicke, M., 2007. Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci., 12(12):564-569.

[30]Pieterse, C.M.J., Poelman, E.H., van Wees, S.C.M., et al., 2013. Induced plant responses to microbes and insects. Front. Plant Sci., 4:475.

[31]Ratzka, A., Vogel, H., Kliebenstein, D.J., et al., 2002. Disarming the mustard oil bomb. PNAS, 99(17):11223-11228.

[32]Redovniković, I.R., Glivetić, T., Delonga, K., et al., 2008. Glucosinolates and their potential role in plant. Period. Biol., 110:297-309.

[33]Robert-Seilaniantz, A., Grant, M., Jones, J.D., 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol., 49(1):317-343.

[34]Rohr, F., Ulrichs, C., Mucha-Pelzer, T., et al., 2006. Variability of aliphatic glucosinolates in Arabidopsis and their influence on insect resistance. Commun. Agric. Appl. Biol. Sci., 71(2 Pt B):507-515.

[35]Schreiner, M., Krumbein, A., Knorr, D., et al., 2011. Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate. J. Agric. Food Chem., 59(4):1400-1405.

[36]Smetanska, I., Krumbein, A., Schreiner, M., et al., 2007. Influence of salicylic acid and methyl jasmonate on glucosinolate levels in turnip. J. Hort. Sci. Biotechnol., 82:690-694.

[37]Smith, J.L., de Moraes, C.M., Mescher, M.C., 2009. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag. Sci., 65(5):497-503.

[38]Steinbrecher, A., Nimptsch, K., Hüsing, A., et al., 2009. Dietary glucosinolate intake and risk of prostate cancer in the EPIC-Heidelberg cohort study. Int. J. Cancer, 125(9):2179-2186.

[39]Stotz, H.U., Sawada, Y., Shimada, Y., et al., 2011. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J., 67(1):81-93.

[40]Sun, B., Yan, H.Z., Zhang, F., et al., 2012. Effects of plant hormones on main health-promoting compounds and antioxidant capacity of Chinese kale. Food. Res. Int., 48(2):359-366.

[41]Takahashi, H., Kanayama, Y., Zheng, M.S., et al., 2004. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol., 45(6):803-809.

[42]Thaler, J.S., Humphrey, P.T., Whiteman, N.K., 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci., 17(5):260-270.

[43]Tierens, K.F., Thomma, B.P., Brouwer, M., et al., 2001. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol., 125(4):1688-1699.

[44]Uquillas, C., Letelier, I., Blanco, F., et al., 2004. NPR1-independent activation of immediate early salicylic acid-responsive genes in Arabidopsis. Mol. Plant Microbe Interact., 17(1):34-42.

[45]van Dam, N.M., Witjes, L., Svatoš, A., 2004. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol., 161(3):801-810.

[46]Verkerk, R., Schreiner, M., Krumbein, A., et al., 2009. Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res., 53(S2):S219-S265.

[47]Wang, X., Wang, H., Wang, J., et al., 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet., 43(10):1035-1039.

[48]Wiesner, M., Hanschen, F.S., Schreiner, M., et al., 2013. Induced production of 1-methoxy-indol-3-ylmethyl glucosinolate by jasmonic acid and methyl jasmonate in sprouts and leaves of pak choi (Brassica rapa ssp. chinensis). Int. J. Mol. Sci., 14(7):14996-15016.

[49]Wiesner, M., Schreiner, M., Glatt, H., 2014. High mutagenic activity of juice from pak choi (Brassica rapa ssp. chinensis) sprouts due to its content of 1-methoxy-3-indolylmethyl glucosinolate, and its enhancement by elicitation with methyl jasmonate. Food Chem. Toxicol., 67:10-16.

[50]Wittstock, U., Kliebenstein, D.J., Lambrix, V., et al., 2003. Chapter five glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Rec. Adv. Phytochem., 37:101-125.

[51]Yang, J., Zhu, Z., Gerendás, J., 2009. Interactive effects of phosphorus supply and light intensity on glucosinolates in pakchoi (Brassica campestris L. ssp. chinensis var. communis). Plant Soil, 323(1-2):323-333.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE