Full Text:   <1063>

Summary:  <393>

CLC number: S865.1

On-line Access: 2015-12-04

Received: 2015-02-23

Revision Accepted: 2015-06-03

Crosschecked: 2015-11-16

Cited: 1

Clicked: 2225

Citations:  Bibtex RefMan EndNote GB/T7714


Jun-rong Li


Fang-xiong Shi


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.12 P.980-990


Induction of follicular luteinization by equine chorionic gonadotropin in cyclic guinea pigs

Author(s):  Jun-rong Li, Wei Wang, Fang-xiong Shi

Affiliation(s):  Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; more

Corresponding email(s):   fxshi@njau.edu.cn

Key Words:  Equine chorionic gonadotropin (eCG), Guinea Pig, Follicular development, Proliferating cell nuclear antigen (PCNA), Steroidogenic acute regulatory protein (StAR)

Jun-rong Li, Wei Wang, Fang-xiong Shi. Induction of follicular luteinization by equine chorionic gonadotropin in cyclic guinea pigs[J]. Journal of Zhejiang University Science B, 2015, 16(12): 980-990.

@article{title="Induction of follicular luteinization by equine chorionic gonadotropin in cyclic guinea pigs",
author="Jun-rong Li, Wei Wang, Fang-xiong Shi",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Induction of follicular luteinization by equine chorionic gonadotropin in cyclic guinea pigs
%A Jun-rong Li
%A Wei Wang
%A Fang-xiong Shi
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 12
%P 980-990
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500046

T1 - Induction of follicular luteinization by equine chorionic gonadotropin in cyclic guinea pigs
A1 - Jun-rong Li
A1 - Wei Wang
A1 - Fang-xiong Shi
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 12
SP - 980
EP - 990
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500046

The effects of equine chorionic gonadotropin (eCG) on follicular development and ovulation in cyclic guinea Pigs were investigated by histological and immunohistochemical analyses. Three groups of guinea Pigs (n=12) were administrated subcutaneously with saline, 20 or 50 IU of eCG, respectively, on cyclic Day 12 (Day 1=vaginal openings). Ovaries were collected at 4 and 8 d after administration (6 animals per group each time). The eCG administration induced significant and distinct morphological changes in the ovaries, as it promoted the luteinization of granulosa cells, but not follicular development. In addition, proliferating cell nuclear antigen (PCNA) and steroidogenic acute regulatory protein (StAR) were immunolocalized specifically in luteinized follicles. Our experiments together indicate that eCG administration can induce follicular luteinization but not superovulation in guinea Pigs. The eCG in cyclic guinea Pigs functions similar to that of luteinizing hormone (LH), but not follicle-stimulating hormone (FSH).


方法:将成年雌性豚鼠(400~700 g,连续2次以上观察到稳定的16天发情周期)分为对照组(腹腔注射生理盐水)和实验组(腹腔注射eCG)。实验组根据注射强度分为20 IU组和50 IU组,并分别于注射后4和8天采集豚鼠卵巢。用苏木精-伊红染色法(H&E)和免疫组化法观察豚鼠卵巢变化情况。测定注射后4天卵巢卵泡大小和数量,测定注射后8天卵巢和子宫重量、黄体数量、黄体化细胞数量和闭锁黄体细胞比例。
结论:本实验中,豚鼠经eCG注射后卵巢变化结果显示:发情期豚鼠卵巢经eCG注射发生明显的形态改变(图1),50 IU组豚鼠卵巢在注射后8天出现了黄体化未破裂卵泡(LUF)现象(图3)。免疫组化结果显示增值细胞核抗原(PCNA)和类激素调节蛋白(StAR)都免疫定位于黄体化卵泡(图8)。综上所述,eCG对于发情期豚鼠发挥了类似促黄体素的作用。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Bland, K.P., 1980. Biphasic follicular growth in the guinea-pig oestrous cycle. J. Reprod. Fertil., 60(1):73-76.

[2]Braw, R.H., Bar-Ami, S., Tsafriri, A., 1981. Effect of hypophysectomy on atresia of rat preovulatory follicles. Biol. Reprod., 25(5):989-996.

[3]Brooke, D.A., Orsi, N.M., Ainscough, J.F.X., et al., 2007. Human menopausal and pregnant mare serum gonadotrophins in murine superovulation regimens for transgenic applications. Theriogenology, 67(8):1409-1413.

[4]Bó, G.A., Mapletoft, R.J., 2014. Historical perspectives and recent research on superovulation in cattle. Theriogenology, 81(1):38-48.

[5]Carson, R.S., Findlay, J.K., Burger, H.G., et al., 1979. Gonadotropin receptors of the ovine ovarian follicle during follicular growth and atresia. Biol. Reprod., 21(1):75-87.

[6]Chun, S.Y., Billig, H., Tilly, J.L., et al., 1994. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin-like growth factor I. Endocrinology, 135(5):1845-1853.

[7]Clark, B.J., Combs, R., Hales, K.H., et al., 1997. Inhibition of transcription affects synthesis of steroidogenic acute regulatory protein and steroidgenesis in MA-10 mouse leydig tumor cells. Endocrinology, 138(11):4893-4901.

[8]Coetsier, T., Dhont, M., 1996. Complete and partial luteinized unruptured follicle syndrome after ovarian stimulation with clomiphene citrate/human menopausal gonadotropin/ human chorionic gonadotropin. Hum. Reprod., 11(3):583-587.

[9]Cognie, Y., 1999. State of the art in sheep-goat embryo transfer. Theriogenology, 51(1):105-116.

[10]Curry, T.E.Jr., Lawrence, I.E.Jr., Burden, H.W., 1984a. Ovarian sympathectomy in the guinea pig. I. Effects on follicular development during estrous cycle. Cell Tissue Res., 236(2):257-263.

[11]Curry, T.E.Jr., Lawrence, I.E.Jr., Burden, H.W., 1984b. Ovarian sympathectomy in the guinea pig. II. Effects on follicular development during the prepubertal period and following exogenous gonadotrop stimulation. Cell Tissue Res., 236(3):593-596.

[12]Forcada, F., Amer-meziane, M.A., Abecia, J.A., et al., 2011. Repeated superovulation using a simplified FSH/eCG treatment for in vivo embryo production in sheep. Theriogenology, 75(4):769-776.

[13]Fry, R.C., Cahill, L.P., Cummins, J.T., et al., 1987. The half-life of follicle-stimulating hormone in ovary-intact and ovariectomized booroola and control merino ewes. J. Reprod. Fertil., 81(2):611-615.

[14]Fujimori, K., Nakamura, R.M., Tonetta, S.A., et al., 1987. Cessation of transition-phase follicle growth in the guinea pig by follicle-regulatory protein. Biol. Reprod., 37(4):812-822.

[15]Fujimori, K., Nakamura, R.M., Tonetta, S.A., et al., 1989. Quantitative-determination of follicle size distribution in the guinea-pig ovary after hemi-castration and PMSG treatment. Endocrinol. Jpn., 36(2):175-185.

[16]Garris, D.R., Foreman, D., 1984. Follicular growth and atresia during the last half of the luteal phase of the guinea pig estrous cycle: relation to serum progesterone and estradiol levels and utero-ovarian blood flow. Endocrinology, 115(1):73-77.

[17]Hermreck, A.S., Greenwald, G.S., 1964. The effects of unilateral ovariectomy on follicular maturation in the guinea pig. Anat. Rec., 148(2):171-176.

[18]Howles, C.M., 2000. Role of LH and FSH in ovarian function. Mol. Cell. Endocrinol., 161(1-2):25-30.

[19]Hudson, N.L., O'Connell, A.R., Shaw, L., et al., 1999. Effect of exogenous FSH on ovulation rate in homozygous carriers or noncarriers of the booroola FecB gene after hypothalamic-pituitary disconnection or after treatment with a GnRH agonist. Domest. Anim. Endocrinol., 16(1):69-80.

[20]Hutz, R.J., Bejvan, S.M., Durning, M., et al., 1990. Changes in follicular populations, in serum estrogen and progesterone, and in ovarian steroid secretion in vitro during the guinea pig estrous cycle. Biol. Reprod., 42(2):266-272.

[21]Kanter, M., Yildiz, C., Meral, I., et al., 2004. Effects of a GnRH agonist on oocyte number and maturation in mice superovulated with eCG and hCG. Theriogenology, 61(2-3):393-398.

[22]Koninckx, P.R., Brosens, I.A., 1982. Clinical significance of the luteinized unruptured follicle syndrome as a cause of infertility. Eur. J. Obstet. Gynecol. Reprod. Biol., 13(6):355-368.

[23]Kulduk, E., Eren, E., Soy, F., et al., 2014. Histological analysis of the effects of anti-adhesive haemostatic agents on the middle ear of the guinea pig. J. Laryngol. Otol., 128(10):885-891.

[24]Kumar, T.R., Wang, L., Lu, N.F., et al., 1997. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet., 15(2):201-204.

[25]Leoni, G., Bogliolo, L., Pintus, P., et al., 2001. Sheep embryos derived from FSH/eCG treatment have a lower in vitro viability after vitrification than those derived from FSH treatment. Reprod. Nutr. Dev., 41(3):239-246.

[26]Li, Y., Wei, Q.W., Feng, J.Q., et al., 2014. Expression of bone morphogenetic protein 2, 4, and related components of the BMP signaling pathway in the mouse uterus during the estrous cycle. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 15(7):601-610.

[27]Manjarin, R., Dominguez, J.C., Castro, M.J., et al., 2009. Effect of prior FSH treatment on the estrus and ovulation responses to eCG in prepubertal gilts. Anim. Reprod. Sci., 110(1-2):123-127.

[28]Miller, A.T., Picton, H.M., Hunter, M.G., 1999. Suppression of ovarian activity in the gilt and reversal by exogenous gonadotrophin administration. Anim. Reprod. Sci., 54(3):179-193.

[29]Mio, Y., Toda, T., Harada, T., et al., 1992. Luteinized unruptured follicle in the early stages of endometriosis as a cause of unexplained infertility. Am. J. Obstet. Gynecol., 167(1):271-273.

[30]Murphy, B., Martinuk, S., 1991. Equine chorionic gonadotropin. Endocrine Rev., 12(1):27-44.

[31]Ozawa, M., Shi, F., Watanabe, G., et al., 2001. Regulatory role of inhibin in follicle-stimulating hormone secretion and folliculogensis in the guinea pig. J. Vet. Med. Sci., 63(10):1091-1095.

[32]Plas-Roser, S., Kauffmann, M.T., Aron, C., 1984. Do luteinized unruptured follicles secrete progesterone in mature female rats? Experientia, 40(5):500-501.

[33]Popova, E., Krivokharchenko, A., Ganten, D., et al., 2002. Comparison between PMSG- and FSH-induced superovulation for the generation of transgenic rats. Mol. Reprod. Dev., 63(2):177-182.

[34]Rahman, M.R., Rahman, M.M., wan Khadijah, W.E., et al., 2014. Follicle stimulating hormone (FSH) dosage based on body weight enhances ovulatory responses and subsequent embryo production in goats. Asian-Australas J. Anim. Sci., 27(9):1270-1274.

[35]Rawson, J.M., Galey, C.I., Weinberg, L.C., et al., 1979. Effects of gonadotropins on follicular development, ovulation, and atresia in the mature guinea pig. Horm. Res., 10(1):25-36.

[36]Shi, F.X., Ozawa, M., Komura, H., et al., 1999. Secretion of ovarian inhibin and its physiologic roles in the regulation of follicle-stimulating hormone secretion during the estrous cycle of the female guinea pig. Biol. Reprod., 60(1):78-84.

[37]Shi, F.X., Watanabe, G., Trewin, A.L., et al., 2000. Localization of ovarian inhibin/activin subunits in follicular dominance during the estrous cycle of guinea pigs. Zool. Sci., 17(9):1311-1320.

[38]Silva, E.G., Tornos, C., Deavers, M., et al., 1998. Induction of epithelial neoplasms in the ovaries of guinea pigs by estrogenic stimulation. Gynecol. Oncol., 71(2):240-246.

[39]Simonetti, L., Forcada, F., Rivera, O.E., et al., 2008. Simplified superovulatory treatments in Corriedale ewes. Anim. Reprod. Sci., 104(2-4):227-237.

[40]Singh, C., Madan, M.L., 1999. The ovarian response of prepubertal buffalo (Bubalus bubalis) to superovulation with equine chorionic gonadotrophin with and without treatment with GnRH. Vet. J., 158(2):155-158.

[41]Small, J.A., Colazo, M.G., Kastelic, J.P., et al., 2009. Effects of progesterone presynchronization and eCG on pregnancy rates to GnRH-based, timed-AI in beef cattle. Theriogenology, 71(4):698-706.

[42]Smith, M.F., McIntush, E.W., Smith, G.W., 1994. Mechanisms associated with corpus luteum development. J. Anim. Sci., 72(7):1857-1872.

[43]Sun, S.Y., Zhang, W., Han, X., et al., 2014. Cell proliferation and apoptosis in the fetal and neonatal ovary of guinea pigs. Genet. Mol. Res., 13(1):1570-1578.

[44]Suzuki, O., Ogura, A., Asano, T., et al., 1993. Development of preimplantation guinea-pig embryos in serum-free media. Reprod. Fertil. Dev., 5(4):425-432.

[45]Suzuki, O., Koura, M., Noguchi, Y., et al., 2003. Optimization of superovulation induction by human menopausal gonadotropin in guinea pigs based on follicular waves and FSH-receptor homologies. Mol. Reprod. Dev., 64(2):219-225.

[46]van Kan, C.M., de Vries, J.I., Luchinger, A.B., et al., 2009. Ontogeny of fetal movements in the guinea pig. Physiol. Behav., 98(3):338-344.

[47]Wang, W., Liu, H., Ding, W., et al., 2010a. Involvement of cell proliferation in the process of follicular atresia in the guinea pig. Tissue Cell., 42(4):234-241.

[48]Wang, W., Liu, H., Tian, W., et al., 2010b. Morphologic observation and classication criteria of atretic follicles in guinea pigs. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 11(5):307-314.

[49]Wei, Z., Lu, X., Zhang, G., et al., 2014. The long-term effects of superovulation on fertility and sexual behavior of male offspring in mice. J. Assist. Reprod. Genet., 31(5):555-560.

[50]Westfahl, P.K., 1988. Circulating sex steroids after induction of luteinized unruptured follicles in adult guinea pigs. Steroids, 51(1-2):101-114.

[51]Westfahl, P.K., 1993. Comparison of luteinized unruptured follicles and corpora lutea: steroid hormone production and response to luteolytic and luteotropic agents. Biol. Reprod., 48(4):807-814.

[52]Wildemann, B., Schmidmaier, G., Ordel, S., et al., 2003. Cell proliferation and differentiation during fracture healing are influenced by locally applied IGF-I and TGF-β 1: comparison of two proliferation markers, PCNA and BrdU. J. Biomed. Mater. Res. B Appl. Biomater., 65(1):150-156.

[53]Xu, B., Hua, J., Zhang, Y., et al., 2011. Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PLoS ONE, 6(1):e16046.

[54]Zanetti, E.S., Munerato, M.S., Cursino, M.S., et al., 2014. Comparing two different superovulation protocols on ovarian activity and fecal glucocorticoid levels in the brown brocket deer (Mazama gouazoubira). Reprod. Biol. Endocrinol., 12:24.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE