CLC number: S865
On-line Access: 2016-08-04
Received: 2015-09-05
Revision Accepted: 2016-02-25
Crosschecked: 2016-07-13
Cited: 1
Clicked: 3998
Cai-fang Wen, Li-xin Xi, Shan Zhao, Zhong-xiang Hao, Lu Luo, Hong Liao, Zhen-rong Chen, Rong She, Guo-quan Han, San-jie Cao, Rui Wu, Qi-gui Yan, Rong Hou. Chryseobacterium chengduensis sp. nov. isolated from the air of captive giant panda enclosures in Chengdu, China[J]. Journal of Zhejiang University Science B, 2016, 17(8): 610-618.
@article{title="Chryseobacterium chengduensis sp. nov. isolated from the air of captive giant panda enclosures in Chengdu, China",
author="Cai-fang Wen, Li-xin Xi, Shan Zhao, Zhong-xiang Hao, Lu Luo, Hong Liao, Zhen-rong Chen, Rong She, Guo-quan Han, San-jie Cao, Rui Wu, Qi-gui Yan, Rong Hou",
journal="Journal of Zhejiang University Science B",
volume="17",
number="8",
pages="610-618",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500214"
}
%0 Journal Article
%T Chryseobacterium chengduensis sp. nov. isolated from the air of captive giant panda enclosures in Chengdu, China
%A Cai-fang Wen
%A Li-xin Xi
%A Shan Zhao
%A Zhong-xiang Hao
%A Lu Luo
%A Hong Liao
%A Zhen-rong Chen
%A Rong She
%A Guo-quan Han
%A San-jie Cao
%A Rui Wu
%A Qi-gui Yan
%A Rong Hou
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 8
%P 610-618
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500214
TY - JOUR
T1 - Chryseobacterium chengduensis sp. nov. isolated from the air of captive giant panda enclosures in Chengdu, China
A1 - Cai-fang Wen
A1 - Li-xin Xi
A1 - Shan Zhao
A1 - Zhong-xiang Hao
A1 - Lu Luo
A1 - Hong Liao
A1 - Zhen-rong Chen
A1 - Rong She
A1 - Guo-quan Han
A1 - San-jie Cao
A1 - Rui Wu
A1 - Qi-gui Yan
A1 - Rong Hou
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 8
SP - 610
EP - 618
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500214
Abstract: A Gram-negative, aerobic, non-motile, rod-shaped bacterial strain, designated 25-1T, was isolated from the air inside giant panda enclosures at the Chengdu Research Base of giant panda Breeding, China. strain 25-1T grew optimally at pH 7.0–8.0, at 28–30 °C and in the presence of NaCl concentrations from 0.0% to 0.5 %. 16S rRNA gene sequence analysis indicated that strain 25-1T belongs to the genus Chryseobacterium within the family Flavobacteriaceae and is related most closely to C. carnis G81T (96.4% similarity), C. lathyri RBA2-6T (95.8% similarity), and C. zeae JM1085T (95.8% similarity). Its genomic DNA G+C molar composition was 36.2%. The major cellular fatty acids were iso-C15:0 (44.0%), iso-C17:0 3OH (19.8%) and C16:1 ω7c/16:1 ω6c (12.7%). The only isoprenoid quinone was menaquinone 6 (MK-6). The major polar lipids were phosphatidylethanolamine, two unidentified amino lipids and two unidentified lipids. The DNA–DNA relatedness between strain 25-1T and C. lathyri RBA2-6T was 38%. Phenotypic, genotypic, and phylogenetic characteristics indicated that strain 25-1T is a novel member of the genus Chryseobacterium, for which the name C. chengduensis sp. nov. is proposed. The type strain is 25-1T (CCTCC AB2015133T=DSM 100396T).
[1]Bernardet, J.F., Nakagawa, Y., Holmes, B., 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol., 52(3):1049-1070.
[2]Bernardet, J.F., Hugo, C.J., Bruun, B., 2010. Chryseobacterium Vandamme Bernardet, Segers, Kersters and Holmes 1994, 829VP. In: Krieg, N.R., Staley, J.T., Brown, D.R. (Eds.), Bergey’s Manual® of Systematic Bacteriology, 2nd Ed., Springer New York, p.180-196.
[3]Buck, J.D., 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol., 44(4):992-993.
[4]Charimba, G., Jooste, P., Albertyn, J., et al., 2013. Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int. J. Syst. Evol. Microbiol., 63(Pt 9):3243-3249.
[5]Chaudhari, P.N., Wani, K.S., Chaudhari, B.L., et al., 2009. Characteristics of sulfobacin A from a soil isolate Chryseobacterium gleum. Appl. Biochem. Biotechnol., 158(1):231-241.
[6]Cho, S.H., Lee, K.S., Shin, D.S., et al., 2010. Four new species of Chryseobacterium from the rhizosphere of coastal sand dune plants, Chryseobacterium elymi sp. nov., Chryseobacterium hagamense sp. nov., Chryseobacterium lathyri sp. nov. and Chryseobacterium rhizosphaerae sp. nov. Syst. Appl. Microbiol., 33(3):122-127.
[7]Ezaki, T., Hashimoto, Y., Yabuuchi, E., 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol., 39(3):224-229.
[8]Greisen, K., Loeffelholz, M., Purohit, A., et al., 1994. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol., 32(2):335-351.
[9]Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17(6):368-376.
[10]Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4):783-791.
[11]Guindon, S., Lethiec, F., Duroux, P., et al., 2005. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res., 33(Suppl. 2):W557-W559.
[12]Holmes, B., Steigerwalt, A.G., Nicholson, A.C., 2013. A DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia, Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, all from mostly human clinical sources and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov., and Chryseobacterium taklimakanense comb. nov. Int. J. Syst. Evol. Microbiol., 63(Pt 12):4639-4662.
[13]Ilardi, P., Fernández, J., Avendaño-Herrera, R., 2009. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int. J. Syst. Evol. Microbiol., 59(12):3001-3005.
[14]Kämpfer, P., Vaneechoutte, M., Lodders, N., et al., 2009. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int. J. Syst. Evol. Microbiol., 59(10):2421-2428.
[15]Kämpfer, P., Poppel, M.T., Wilharm, G., 2014a. Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int. J. Syst. Evol. Microbiol., 64(Pt 4):1419-1427.
[16]Kämpfer, P., McInroy, J.A., Glaeser, S.P., 2014b. Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie van Leeuwenhoek, 105(3):491-500.
[17]Kämpfer, P., Busse, H.J., McInroy, J.A., et al., 2015a. Chryseobacterium arachidiradicis sp. nov. isolated from the geocarposphere (soil around the peanut) of very immature peanuts (Arachis hypogaea). Int. J. Syst. Evol. Microbiol., 65(7):2179-2186.
[18]Kämpfer, P., Trček, J., Skok, B., et al., 2015b. Chryseobacterium limigenitum sp. nov., isolated from dehydrated sludge. Antonie van Leeuwenhoek, 107(6):1633-1638.
[19]Kim, H.S., Sang, M.K., Jung, H.W., et al., 2012. Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent of Phytophthora blight of pepper. Crop Prot., 32:129-137.
[20]Kim, O.S., Cho, Y.J., Lee, K., et al., 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol., 62(Pt 3):716-721.
[21]Kluge, A.G., Farris, J.S., 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool., 18(1):1-32.
[22]Li, Z., Zhu, H., 2012. Chryseobacterium vietnamense sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol., 62(Pt 4):827-831.
[23]Lo, H.H., Chang, S.M., 2014. Identification, characterization, and biofilm formation of clinical Chryseobacterium gleum isolates. Diagn. Micr. Infec. Dis., 79(3):298-302.
[24]Loch, T.P., Faisal, M., 2014. Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans and Chryseobacterium gregarium. Int. J. Syst. Evol. Microbiol., 64(Pt 5):1573-1579.
[25]Mandel, M., Marmur, J., 1968. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol., 12(Pt B):195-206.
[26]Monteen, M.R., Ponnapula, S., Wood, G.C., et al., 2013. Treatment of Chryseobacterium indologenes ventilator-associated pneumonia in a critically Ill trauma patient. Ann. Pharmacother., 47(12):1736-1739.
[27]Montero-Calasanz, M., Göker, M., Rohde, M., et al., 2014. Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst. Appl. Microbiol., 37(5):342-350.
[28]Nemli, S.A., Demirdal, T., Ural, S., 2015. A case of healthcare associated pneumonia caused by Chryseobacterium indologenes in an immunocompetent patient. Case Report. Infect. Dis., 2015:483923.
[29]O'Hara, C.M., 2006. Evaluation of the Phoenix 100 ID/AST system and NID panel for identification of Enterobacteriaceae, Vibrionaceae, and commonly isolated nonenteric Gram-negative bacilli. J. Clin. Microbial., 44(3):928-933.
[30]Park, Y.J., Son, H.M., Lee, E.H., et al., 2013. Chryseobacterium gwangjuense sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol., 63(Pt 12):4580-4585.
[31]Sambrook, J., Russell, D.W., 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor, NY.
[32]Sharma, P., Gupta, S.K., Diene, S.M., et al., 2015. Whole-genome sequence of Chryseobacterium oranimense, a colistin resistant bacterium isolated from a cystic fibrosis patient in France. Antimicrob. Agents Chemother., 59(3):1696-1706.
[33]Shimomura, K., Kaji, S., Hiraishi, A., 2005. Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int. J. Syst. Evol. Microbiol., 55(5):1903-1906.
[34]Skerman, V.B.D., 1967. A Guide to the Identification of the Genera of Bacteria, 2nd Ed. Williams & Wilkins Co., Baltimore.
[35]Smibert, R.M., Krieg, N.R., 1994. Phenotypic characterization. In: Gerhardt, P., Murray, R.G.E., Wood, W.A., et al. (Eds.), Methods for General and Molecular Bacteriology, American Society for Microbiology. Washington, DC, p.607-653.
[36]Stackebrandt, E., Frederiksen, W., Garrity, G.M., et al., 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol., 52(3):1043-1047.
[37]Tamura, K., Stecher, G., Peterson, D., et al., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol., 30(12):2725-2729.
[38]Thompson, J.D., Gibson, T.J., Plewniak, F., et al., 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25(24):4876-4882.
[39]Tindall, B.J., 1990. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett., 66(1-3):199-202.
[40]Vandamme, P., Bernardet, J.F., Segers, P., et al., 1994. New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int. J. Syst. Bacteriol., 44(4):827-831.
[41]Wang, S.L., Liang, Y.C., Liang, T.W., 2011. Purification and characterization of a novel alkali-stable α-amylase from Chryseobacterium taeanense TKU001, and application in antioxidant and prebiotic. Process Biochem., 46(3):745-750.
[42]Wen, C., Xi, L., She, R., et al., 2016. Lysobacter chengduensis sp. nov. isolated from the air of captive Ailuropoda melanoleuca enclosures in Chengdu, China. Curr. Microbiol., 72(1):88-93.
[43]Xie, C.H., Yokota, A., 2003. Phylogenetic analysis of Lampropedia hyalina based on the 16S rRNA gene sequence. J. Gen. Appl. Microbiol., 49(6):345-349.
[44]Xu, X.W., Wu, M., 2005. Isolation and characterization of a novel strain of Natrinema containing a bop gene. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 6(2):142-146.
[45]Yang, F., Liu, H.M., Li, S.P., et al., 2015. Chryseobacterium shandongense sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol., 65(6):1860-1865.
[46]List of electronic supplementary materials
[47]Fig. S1 Transmission electron micrograph of a negatively stained cell of strain 25-1T, showing the absence of flagella
Open peer comments: Debate/Discuss/Question/Opinion
<1>