Full Text:   <947>

Summary:  <353>

CLC number: S476

On-line Access: 2016-08-04

Received: 2015-09-17

Revision Accepted: 2016-01-30

Crosschecked: 2016-07-13

Cited: 0

Clicked: 1710

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ya-qian Li

http://orcid.org/0000-0001-9622-994X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.8 P.619-627

10.1631/jzus.B1500226


Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation


Author(s):  Ya-qian Li, Kai Song, Ya-chai Li, Jie Chen

Affiliation(s):  School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; more

Corresponding email(s):   lauren@sjtu.edu.cn, jiechen59@sjtu.edu.cn

Key Words:  Trichoderma harzianum SH2303, Chlamydospore, Plackett-Burman screening, Box-Behnken design, Fermentation optimization


Ya-qian Li, Kai Song, Ya-chai Li, Jie Chen. Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation[J]. Journal of Zhejiang University Science B, 2016, 17(8): 619-627.

@article{title="Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation",
author="Ya-qian Li, Kai Song, Ya-chai Li, Jie Chen",
journal="Journal of Zhejiang University Science B",
volume="17",
number="8",
pages="619-627",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500226"
}

%0 Journal Article
%T Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation
%A Ya-qian Li
%A Kai Song
%A Ya-chai Li
%A Jie Chen
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 8
%P 619-627
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500226

TY - JOUR
T1 - Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation
A1 - Ya-qian Li
A1 - Kai Song
A1 - Ya-chai Li
A1 - Jie Chen
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 8
SP - 619
EP - 627
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500226


Abstract: 
Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×108 spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×108 spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents.

哈茨木霉菌SH2303高产厚垣孢子液体发酵优化

目的:鉴于厚垣孢子为主要活性成分的木霉菌剂具有 抗逆性强、存活期长、易贮藏等特点,更容易满足实际生产需求,本文利用系统的液体发酵策略,优化木霉菌高产厚垣孢子液体发酵条件,同时降低发酵成本,指导未来木霉菌厚垣孢子生防菌剂研发。
创新点:采用从开放到闭合的递进式液体发酵筛选优化模式,通过Plackett-Burman设计和Box-Behnken优化设计确定影响木霉菌产厚垣孢子的关键因子及最佳发酵条件,确定玉米粉作为基础培养基,添加甘油和调节pH相结合的液体发酵策略,在降低发酵成本的同时提高厚垣孢子产量。
方法:以玉米粉为基础培养基,通过Plackett-Burman筛选实验,从8个候选的发酵因子中初步确定玉米粉、甘油和发酵液起始pH值三个显著因子。进而利用响应面中的Box-Behnken设计(表5)三个因素为自变量,厚垣孢子产量为响应值,通过Design Expert 7.0软件对实验数据进行多项式回归分析,建立多元二次回归方程。通过方差分析,最终确定木霉菌SH2303高产厚垣孢子液体发酵工艺的最佳参数。
结论:确定了影响厚垣孢子形成的三个关键的发酵因子:玉米粉、甘油和起始pH值。获得厚垣孢子形成最佳的液体发酵条件:玉米粉62.86 g/L,甘油 7.54 ml/L,起始pH 4.17,发酵6天。实际最大厚垣孢子产量4.5×108 孢子/ml,与模型预测值3.6×108 孢子/ml相当。厚垣孢子产量与优化前相比提高8倍,可用于指导低成本的木霉菌厚垣孢子新型生防菌剂开发。

关键词:哈茨木霉菌SH2303厚垣孢子;Plackett-Burman筛选;Box-Behnken设计;液体发酵优化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bae, S., Shoda, M., 2005. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng., 90(1):20-28.

[2]Carreras-Villasenor, N., Sanchez-Arreguin, J.A., Herrera-Estrella, A.H., 2011. Trichoderma: sensing the environment for survival and dispersal. Microbiology, 158(1):3-16.

[3]Fravel, D.R., 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol., 43(1):337-359.

[4]Friedl, M.A., Kubicek, C.P., Druzhinina, I.S., 2008. Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl. Environ. Microbiol., 74(1):245-250.

[5]Gao, L., Sun, M.H., Liu, X.Z., et al., 2007. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol. Res., 111(1):87-92.

[6]Harman, G.E., 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2):190-194.

[7]Harman, G.E., Howell, C.R., Viterbo, A., et al., 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2(1):43-56.

[8]Jagtap, G.P., Bhatnagar, S.S., 2000. Trichoderma chlamydospores-based formulation (Tricoguard™): impact on shelf life. Pestology, 24(9):70-71.

[9]Lai, L.S.T., Pan, C.C., Tzeng, B.K., 2003. The influence of medium design on lovastatin production and pellet formation with a high-producing mutant of Aspergillus terreus in submerged cultures. Process Biochem., 38(9):1317-1326.

[10]Lewis, J.A., Papavizas, G.C., 1983. Production of chlamydospores and conidia by Trichoderma spp. in liquid and solid growth media. Soil. Biol. Biochem., 15(3):351-357.

[11]Lewis, J.A., Papavizas, G.C., 1984. Chlamydospore formation by Trichoderma spp. in natural substrates. Can. J. Microbiol., 30(1):1-7.

[12]Lin, Z., Ma, J., Yi, S., et al., 2012. Effect of salinity on the biocotrol Trichoderma strain SH2303. J. Shanghai Jiaotong Univ. (Agric. Sci.), 30(5):51-53 (in Chinese).

[13]Mach, R.L., Zeilinger, S., 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol., 60(5):515-522.

[14]Marra, R., Ambrosino, P., Carbone, V., et al., 2006. Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr. Genet., 50(5):307-321.

[15]Maurya, D.P., Singh, D., Pratap, D., et al., 2012. Optimization of solid state fermentation conditions for the production of cellulase by Trichoderma reesei. J. Environ. Biol., 33(1):5-8.

[16]Mishra, D.S., Prajapati, C.R., Gupta, A.K., et al., 2012. Relative bio-efficacy and shelf-life of mycelial fragments, conidia and chlamydospores of Trichoderma harzianum. Vegetos, 25(1):225-232.

[17]Moreno-Mateos, M.A., Delgado-Jarana, J., Codón, A.C., et al., 2007. pH and Pac1 control development and antifungal activity in Trichoderma harzianum. Fungal Genet. Biol., 44(12):1355-1367.

[18]Mukherjee, P.K., Kenerley, C.M., 2010. Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl. Environ. Microbiol., 76(7):2345-2352.

[19]Schuster, A., Schmoll, M., 2010. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol., 87(3):787-799.

[20]Singh, A., Srivastava, S., Singh, H.B., 2007. Effect of substrates on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases. Bioresour. Technol., 98(2):470-473.

[21]Sriram, S., Roopa, K.P., Savitha, M.J., 2011. Extended shelf-life of liquid fermentation derived talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium. Crop Prot., 30(10):1334-1339.

[22]Steyaert, J.M., Weld, R.J., Stewart, A., 2010a. Ambient pH intrinsically influences Trichoderma conidiation and colony morphology. Fungal Biol., 114(2-3):198-208.

[23]Steyaert, J.M., Weld, R.J., Stewart, A., 2010b. Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biol., 114(2-3):179-188.

[24]Tisch, D., Schmoll, M., 2010. Light regulation of metabolic pathways in fungi. Appl. Microbiol. Biotechnol., 85(5):1259-1277.

[25]Verma, M., Brar, S.K., Tyagi, R.D., et al., 2007. Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem. Eng. J., 37(1):1-20.

[26]Woo, S.L., Scala, F., Ruocco, M., et al., 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology, 96(2):181-185.

[27]Zeilinger, S., Galhaup, C., Payer, K., et al., 1999. Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet. Biol., 26(2):131-140.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE