Full Text:   <2272>

Summary:  <1543>

CLC number: Q2-33

On-line Access: 2016-10-02

Received: 2015-09-25

Revision Accepted: 2016-02-16

Crosschecked: 2016-09-10

Cited: 1

Clicked: 3327

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yuan-yuan Xu

http://orcid.org/0000-0001-8069-9285

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.10 P.807-812

http://doi.org/10.1631/jzus.B1500232


Detection of biological thiols based on a colorimetric method


Author(s):  Yuan-yuan Xu, Yang-yang Sun, Yu-juan Zhang, Chen-he Lu, Jin-feng Miao

Affiliation(s):  Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

Corresponding email(s):   mjf171647@126.com

Key Words:  Biothiols, Colorimetric detection, Bovine plasma, Cell lines


Yuan-yuan Xu, Yang-yang Sun, Yu-juan Zhang, Chen-he Lu, Jin-feng Miao. Detection of biological thiols based on a colorimetric method[J]. Journal of Zhejiang University Science B, 2016, 17(10): 807-812.

@article{title="Detection of biological thiols based on a colorimetric method",
author="Yuan-yuan Xu, Yang-yang Sun, Yu-juan Zhang, Chen-he Lu, Jin-feng Miao",
journal="Journal of Zhejiang University Science B",
volume="17",
number="10",
pages="807-812",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1500232"
}

%0 Journal Article
%T Detection of biological thiols based on a colorimetric method
%A Yuan-yuan Xu
%A Yang-yang Sun
%A Yu-juan Zhang
%A Chen-he Lu
%A Jin-feng Miao
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 10
%P 807-812
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500232

TY - JOUR
T1 - Detection of biological thiols based on a colorimetric method
A1 - Yuan-yuan Xu
A1 - Yang-yang Sun
A1 - Yu-juan Zhang
A1 - Chen-he Lu
A1 - Jin-feng Miao
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 10
SP - 807
EP - 812
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500232


Abstract: 
Biological thiols (biothiols), an important kind of functional biomolecules, such as cysteine (Cys) and glutathione (GSH), play vital roles in maintaining the stability of the intracellular environment. In past decades, studies have demonstrated that metabolic disorder of biothiols is related to many serious disease processes and will lead to extreme damage in human and numerous animals. We carried out a series of experiments to detect biothiols in biosamples, including bovine plasma and cell lysates of seven different cell lines based on a simple colorimetric method. In a typical test, the color of the test solution could gradually change from blue to colorless after the addition of biothiols. Based on the color change displayed, experimental results reveal that the percentage of biothiols in the embryonic fibroblast cell line is significantly higher than those in the other six cell lines, which provides the basis for the following biothiols-related study.

生物巯化物的可视化检测

目的:通过简单可靠的可视化检测方法评估牛血清及各细胞系中生物巯化物的含量。
创新点:基于银纳米颗粒形成的比色变化过程对牛血清及细胞中生物巯化物进行了检测。
方法:将6组不同的细胞系培养后进行裂解,其裂解产物分别与3,3’,5,5’-四甲基联苯胺(TMB)和硝酸银(AgNO3)的混合液室温孵育后,用紫外可见分光光度计测量细胞中生物巯化物的含量。
结论:通过不同细胞系中生物巯化物含量的比对,证实胚胎成纤维细胞中生物巯化物的含量明显高于其他细胞。

关键词:生物巯化物;可视检测;牛血清;细胞系

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Duan, L., Xu, Y., Qian, X., et al., 2008. Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage: symmetrical naphthalimide aldehyde. Tetrahedron Lett., 49(47):6624-6627.

[2]Ghasemi, F., Hormozi-Nezhad, M.R., Mahmoudi, M., 2015. A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Anal. Chim. Acta, 882:58-67.

[3]Heafield, M.T., Fearn, S., Steventon, G.B., et al., 1990. Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease. Neurosci. Lett., 110(1-2):216-220.

[4]Hong, V., Kislukhin, A.A., Finn, M., 2009. Thiol-selective fluorogenic probes for labeling and release. J. Am. Chem. Soc., 131(29):9986-9994.

[5]Lee, K.S., Kim, T.K., Lee, J.H., et al., 2008. Fluorescence turn-on probe for homocysteine and cysteine in water. Chem. Commun., 46:6173-6175.

[6]Lin, W., Long, L., Yuan, L., et al., 2008. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org. Lett., 10(24):5577-5580.

[7]Liu, J., Sun, Y.Q., Huo, Y., et al., 2014. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J. Am. Chem. Soc., 136(2):574-577.

[8]Ni, P., Sun, Y., Dai, H., et al., 2015. Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion–3,3',5,5'-tetramethylbenzidine (TMB). Biosens. Bioelectron., 63:47-52.

[9]Ran, X., Sun, H., Pu, F., et al., 2013. Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chem. Commun., 49(11):1079-1081.

[10]Reddie, K.G., Carroll, K.S., 2008. Expanding the functional diversity of proteins through cysteine oxidation. Curr. Opin. Chem. Biol., 12(6):746-754.

[11]Rusin, O., St. Luce, N.N., Agbaria, R.A., et al., 2004. Visual detection of cysteine and homocysteine. J. Am. Chem. Soc., 126(2):438-439.

[12]Shiu, H.Y., Chong, H.C., Leung, Y.C., et al., 2010. A highly selective FRET-based fluorescent probe for detection of cysteine and homocysteine. Chemistry, 16(11):3308-3313.

[13]Townsend, D.M., Tew, K.D., Tapiero, H., 2003. The importance of glutathione in human disease. Biomed. Pharmacother., 57(3):145-155.

[14]Wang, W., Rusin, O., Xu, X., et al., 2005. Detection of homocysteine and cysteine. J. Am. Chem. Soc., 127(45):15949-15958.

[15]Weerapana, E., Wang, C., Simon, G.M., et al., 2010. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature, 468(7325):790-795.

[16]Yang, J., Wang, H., Zhang, H., 2008. One-pot synthesis of silver nanoplates and charge-transfer complex nanofibers. J. Phys. Chem. C, 112(34):13065-13069.

[17]Yang, X., Guo, Y., Strongin, R.M., 2011. Conjugate addition/ cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew. Chem. Int. Ed., 50(45):10690-10693.

[18]Yang, X., Guo, Y., Strongin, R.M., 2012. A seminaphthofluorescein-based fluorescent chemodosimeter for the highly selective detection of cysteine. Org. Biomol. Chem., 10(14):2739-2741.

[19]Yi, L., Li, H., Sun, L., et al., 2009. A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase. Angew. Chem. Int. Ed., 48(22):4034-4037.

[20]Zhang, L., Lu, B., Lu, C., et al., 2014. Determination of cysteine, homocysteine, cystine, and homocystine in biological fluids by HPLC using fluorosurfactant-capped gold nanoparticles as postcolumn colorimetric reagents. J. Sep. Sci., 37(1-2):30-36.

[21]Zhu, B., Guo, B., Zhao, Y., et al., 2014. A highly sensitive ratiometric fluorescent probe with a large emission shift for imaging endogenous cysteine in living cells. Biosens. Bioelectron., 55:72-75.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE