Full Text:   <1249>

Summary:  <414>

Suppl. Mater.: 

CLC number: Q93

On-line Access: 2016-08-04

Received: 2016-04-20

Revision Accepted: 2016-05-24

Crosschecked: 2016-07-13

Cited: 0

Clicked: 1777

Citations:  Bibtex RefMan EndNote GB/T7714


Qing Gu


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2016 Vol.17 No.8 P.569-579


Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles

Author(s):  Ping Li, Xuan Li, Qing Gu, Xiu-yu Lou, Xiao-mei Zhang, Da-feng Song, Chen Zhang

Affiliation(s):  Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; more

Corresponding email(s):   guqing2002@hotmail.com

Key Words:  Lactobacillus plantarum ZJ316, Comparative genomics, Probiotics, Adaptation

Share this article to: More |Next Article >>>

Ping Li, Xuan Li, Qing Gu, Xiu-yu Lou, Xiao-mei Zhang, Da-feng Song, Chen Zhang. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles[J]. Journal of Zhejiang University Science B, 2016, 17(8): 569-579.

@article{title="Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles",
author="Ping Li, Xuan Li, Qing Gu, Xiu-yu Lou, Xiao-mei Zhang, Da-feng Song, Chen Zhang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles
%A Ping Li
%A Xuan Li
%A Qing Gu
%A Xiu-yu Lou
%A Xiao-mei Zhang
%A Da-feng Song
%A Chen Zhang
%J Journal of Zhejiang University SCIENCE B
%V 17
%N 8
%P 569-579
%@ 1673-1581
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600176

T1 - Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles
A1 - Ping Li
A1 - Xuan Li
A1 - Qing Gu
A1 - Xiu-yu Lou
A1 - Xiao-mei Zhang
A1 - Da-feng Song
A1 - Chen Zhang
J0 - Journal of Zhejiang University Science B
VL - 17
IS - 8
SP - 569
EP - 579
%@ 1673-1581
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600176

Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate.

比较基因组学揭示植物乳杆菌ZJ316的生境适 应性及潜在益生特性



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Alvarez-Sieiro, P., Montalban-Lopez, M., Mu, D., et al., 2016. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol., 100(7):2939-2951.

[2]Axelsson, L., Rud, I., Naterstad, K., et al., 2012. Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). J. Bacteriol., 194(9):2391-2392.

[3]Barrangou, R., Fremaux, C., Deveau, H., et al., 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819):1709-1712.

[4]Begley, M., Hill, C., Gahan, C.G., 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol., 72(3):1729-1738.

[5]Bron, P.A., Molenaar, D., de Vos, W.M., et al., 2006. DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J. Appl. Microbiol., 100(4):728-738.

[6]Carver, T., Berriman, M., Tivey, A., et al., 2008. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics, 24(23):2672-2676.

[7]Chang, W., Small, D.A., Toghrol, F., et al., 2006. Global transcriptome analysis of Staphylococcus aureus response to hydrogen peroxide. J. Bacteriol., 188(4):1648-1659.

[8]Chen, C., Ai, L., Zhou, F., et al., 2012. Complete nucleotide sequence of plasmid pST-III from Lactobacillus plantarum ST-III. Plasmid, 67(3):236-244.

[9]Citar, M., Hacin, B., Tompa, G., et al., 2015. Human intestinal mucosa-associated Lactobacillus and Bifidobacterium strains with probiotic properties modulate IL-10, IL-6 and IL-12 gene expression in THP-1 cells. Benef. Microbes, 6(3):325-336.

[10]Diep, D.B., Straume, D., Kjos, M., et al., 2009. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides, 30(8):1562-1574.

[11]Ding, G., Yu, Z., Zhao, J., et al., 2008. Tree of life based on genome context networks. PLOS ONE, 3(10):e3357.

[12]Fernandez, M.F., Boris, S., Barbes, C., 2003. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol., 94(3):449-455.

[13]Grissa, I., Vergnaud, G., Pourcel, C., 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res., 35(Suppl. 2):W52-W57.

[14]Haandrikman, A.J., Meesters, R., Laan, H., et al., 1991. Processing of the lactococcal extracellular serine proteinase. Appl. Environ. Microbiol., 57(7):1899-1904.

[15]Hill, C., Guarner, F., Reid, G., et al., 2014. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 11(8):506-514.

[16]Horvath, P., Coute-Monvoisin, A.C., Romero, D.A., et al., 2009. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol., 131(1):62-70.

[17]Huang, F., Fulda, S., Hagemann, M., et al., 2006. Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics, 6(3):910-920.

[18]Kandler, O., 1983. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49(3):209-224.

[19]Kumar, R., Grover, S., Batish, V.K., 2012. Bile salt hydrolase (Bsh) activity screening of lactobacilli: in vitro selection of indigenous Lactobacillus strains with potential bile salt hydrolysing and cholesterol-lowering ability. Probiotics Antimicrob. Proteins, 4(3):162-172.

[20]Kurtz, S., Phillippy, A., Delcher, A.L., et al., 2004. Versatile and open software for comparing large genomes. Genome Biol., 5(2):R12.

[21]Lavilla-Lerma, L., Perez-Pulido, R., Martinez-Bueno, M., et al., 2013. Characterization of functional, safety, and gut survival related characteristics of Lactobacillus strains isolated from farmhouse goat’s milk cheeses. Int. J. Food Microbiol., 163(2-3):136-145.

[22]Li, X., Gu, Q., Lou, X., et al., 2013. Complete genome sequence of the probiotic Lactobacillus plantarum strain ZJ316. Genome Announc., 1(2):e00094-13.

[23]Lurie-Weinberger, M.N., Peeri, M., Gophna, U., 2012. Contribution of lateral gene transfer to the gene repertoire of a gut-adapted methanogen. Genomics, 99(1):52-58.

[24]Maldonado, A., Ruiz-Barba, J.L., Jimenez-Diaz, R., 2003. Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl. Environ. Microbiol., 69(1):383-389.

[25]Maldonado, A., Ruiz-Barba, J.L., Jimenez-Diaz, R., 2004. Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of Gram-positive bacteria. Arch. Microbiol., 181(1):8-16.

[26]Nissen-Meyer, J., Oppegard, C., Rogne, P., et al., 2010. Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrob. Proteins, 2(1):52-60.

[27]Presti, I., D'Orazio, G., Labra, M., et al., 2015. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect. Appl. Microbiol. Biotechnol., 99(13):5613-5626.

[28]Remus, D.M., van Kranenburg, R., van Swam, I.I., et al., 2012. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microb. Cell Fact., 11:149.

[29]Saenz, Y., Rojo-Bezares, B., Navarro, L., et al., 2009. Genetic diversity of the pln locus among oenological Lactobacillus plantarum strains. Int. J. Food Microbiol., 134(3):176-183.

[30]Savijoki, K., Ingmer, H., Varmanen, P., 2006. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol., 71(4):394-406.

[31]Siezen, R.J., van Hylckama Vlieg, J.E., 2011. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb. Cell Fact., 10(Suppl. 1):S3.

[32]Siezen, R.J., Tzeneva, V.A., Castioni, A., et al., 2010. Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ. Microbiol., 12(3):758-773.

[33]Siezen, R.J., Francke, C., Renckens, B., et al., 2012. Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J. Bacteriol., 194(1):195-196.

[34]Sorek, R., Kunin, V., Hugenholtz, P., 2008. CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol., 6(3):181-186.

[35]Suo, C., Yin, Y., Wang, X., et al., 2012. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet. Res., 8:89.

[36]Tatusov, R.L., Galperin, M.Y., Natale, D.A., et al., 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res., 28(1):33-36.

[37]Wang, Y., Chen, C., Ai, L., et al., 2011. Complete genome sequence of the probiotic Lactobacillus plantarum ST-III. J. Bacteriol., 193(1):313-314.

[38]Yang, Z., Li, S., Zhang, X., et al., 2010. Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: potential application in fermented milk products. J. Biosci. Bioeng., 110(1):53-57.

[39]Yuan, J., Wang, B., Sun, Z., et al., 2008. Analysis of host-inducing proteome changes in bifidobacterium longum NCC2705 grown in vivo. J. Proteome Res., 7(1):375-385.

[40]Zhang, Z.Y., Liu, C., Zhu, Y.Z., et al., 2009. Complete genome sequence of Lactobacillus plantarum JDM1. J. Bacteriol., 191(15):5020-5021.

[41]Zhao, G., Ceci, P., Ilari, A., et al., 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J. Biol. Chem., 277(31):27689-27696.

[42]List of electronic supplementary materials

[43]Table S1 PTS predicted in L. plantarum ZJ316

[44]Table S2 Peptidases and proteases genes in L. plantarum ZJ316

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE