Full Text:   <3294>

Summary:  <1815>

CLC number: R284.2

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-07-19

Cited: 0

Clicked: 5262

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yun Chen

http://orcid.org/0000-0001-8211-0729

Xiu-ju Du

http://orcid.org/0000-0001-9736-5505

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.8 P.674-684

http://doi.org/10.1631/jzus.B1600239


Ultrasound extraction optimization, structural features, and antioxidant activity of polysaccharides from Tricholoma matsutake


Author(s):  Yun Chen, Xiu-ju Du, Yang Zhang, Xin-hua Liu, Xuan-dong Wang

Affiliation(s):  College of Life Science, Liaocheng University, Liaocheng 252059, China; more

Corresponding email(s):   duxiuju@lcu.edu.cn

Key Words:  Tricholoma matsutake polysaccharide, Orthogonal test design, Ultrasound-assisted extraction, Monosaccharide composition, Antioxidant activity


Yun Chen, Xiu-ju Du, Yang Zhang, Xin-hua Liu, Xuan-dong Wang. Ultrasound extraction optimization, structural features, and antioxidant activity of polysaccharides from Tricholoma matsutake[J]. Journal of Zhejiang University Science B, 2017, 18(8): 674-684.

@article{title="Ultrasound extraction optimization, structural features, and antioxidant activity of polysaccharides from Tricholoma matsutake",
author="Yun Chen, Xiu-ju Du, Yang Zhang, Xin-hua Liu, Xuan-dong Wang",
journal="Journal of Zhejiang University Science B",
volume="18",
number="8",
pages="674-684",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600239"
}

%0 Journal Article
%T Ultrasound extraction optimization, structural features, and antioxidant activity of polysaccharides from Tricholoma matsutake
%A Yun Chen
%A Xiu-ju Du
%A Yang Zhang
%A Xin-hua Liu
%A Xuan-dong Wang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 8
%P 674-684
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600239

TY - JOUR
T1 - Ultrasound extraction optimization, structural features, and antioxidant activity of polysaccharides from Tricholoma matsutake
A1 - Yun Chen
A1 - Xiu-ju Du
A1 - Yang Zhang
A1 - Xin-hua Liu
A1 - Xuan-dong Wang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 8
SP - 674
EP - 684
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600239


Abstract: 
An ultrasonic-assisted technique was employed to extract crude polysaccharide from Tricholoma matsutake fruiting bodies. Single-factor tests and orthogonal experimental design (L9(33)) were used to obtain the optimal extraction conditions. Results showed that the optimal parameters were as follows: ultrasonic temperature, 40 °C; ultrasonic time, 50 min; water to raw material ratio, 25 ml/g; ultrasonic frequency, 45 kHz; and ultrasonic power, 100 W. Three novel T. matsutake polysaccharide (TMP) fractions (TMP30, TMP60, and TMP80) were isolated and purified from TMP by stepwise alcohol precipitation. Their preliminary structural features were determined by high-performance anion-exchange chromatography with pulsed-amperometric detection (HPAEC-PAD) and Fourier transform infrared spectrophotometer (FT-IR) analyses. Furthermore, their in vitro antioxidant activity was investigated in terms of a reducing power assay and the scavenging rates of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals. The order of the various fractions based on their antioxidant activity was TMP80>TMP>TMP60>TMP30. These findings suggested that novel polysaccharide fractions from T. matsutake, especially TMP80, could be promising active macromolecules for biomedical use.

松茸多糖的超声波提取优化、结构特性和抗氧化活性研究

目的:对超声提取松茸多糖(TMP)的工艺条件进行优化,对TMP进一步分离纯化,并对纯化多糖(TMP30、TMP60和TMP80)的结构和抗氧化活性进行评估。
创新点:首次对超声辅助制备的TMP进行了乙醇分级,对其进行了结构和抗氧化活性评估,并筛选出了抗氧化活性最强的部位(TMP80)。
方法:采用单因素试验和正交试验(L9(33))对超声提取TMP的工艺条件进行了优化;采用不同的乙醇终浓度对TMP分离纯化为3种多糖TMP30、TMP60和TMP80;采用高效阴离子色谱(HPAEC-PAD)和傅里叶红外(FT-IR)等技术对3种多糖的理化性质进行了结构表征;利用还原力测定、二苯三硝基苯肼(DPPH)和羟自由基的清除作用对它们的抗氧化活性进行了评估。
结论:正交试验结果表明,超声提取TMP的最优工艺条件为:超声温度40 °C,超声时间50 min,水原料比例25 ml/g,超声波频率45 kHz和超声波功率100 W(表1和表2)。在此条件下的TMP得率为8.06%。采用乙醇分级法对TMP进一步分离纯化,制备得到3种多糖TMP30、TMP60和TMP80。HPAEC-PAD和FT-IR的结果表明,TMP30、TMP60和TMP80均主要由岩藻糖(L-Fuc)、半乳糖(D-Gal)、葡萄糖(D-Glc)、木糖(D-Xyl)和甘露糖(D-Man)组成,它们具有相同的单糖组成,但含有不同的摩尔比,且均有β-构型(图2、图3和表3)。抗氧化活性结果表明,它们的能力高低顺序为:TMP80>TMP>TMP60>TMP30(图4和表4),TMP80抗氧化活性最高,为松茸多糖的进一步开发利用提供重要的科学依据。

关键词:松茸多糖;正交试验设计;超声辅助提取;单糖组成;抗氧化活性

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Achat, S., Tomao, V., Madani, K., et al., 2012. Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason. Sonochem., 19(4):777-786.

[2]Afshari, K., Samavati, V., Shahidi, S.A., 2015. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf. Int. J. Biol. Macromol., 74:558-567.

[3]Ardestani, A., Yazdanparast, R., 2007. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem., 104(1):21-29.

[4]Bohn, J.A., BeMiller, J.N., 1995. (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr. Polym., 28(1):3-14.

[5]Brand-Williams, W., Cuvelier, M.E., Berset, C., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol., 28(1):25-30.

[6]Chemat, F., Rombaut, N., Sicaire, A., et al., 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem., 34:540-560.

[7]Devasagayam, T.P.A., Tilak, J.C., Boloor, K.K., et al., 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Phys. India, 52:794-804.

[8]Du, X.J., Yang, Y., Ye, L.B., et al., 2009. Structural elucidation and immuno-stimulating property of an acidic heteropolysaccharide (TAPA1) from Tremella aurantialba. Carbohydr. Res., 344(5):672-678.

[9]Du, X.J., Mu, H.M., Zhou, S., et al., 2013. Chemical analysis and antioxidant activity of polysaccharides extracted from Inonotus obliquus sclerotia. Int. J. Biol. Macromol., 62(11):691-696.

[10]Hoshi, H., Iijima, B., Ishihara, Y., et al., 2008. Absorption and tissue distribution of an immunomodulatory α-D-glucan after oral administration of Tricholoma matsutake. J. Agric. Food Chem., 56(17):7715-7720.

[11]Hu, J., Jia, X.J., Fang, X.B., et al., 2016. Ultrasonic extraction, antioxidant and anticancer activities of nove lpolysaccharides from Chuanxiong rhizome. Int. J. Biol. Macromol., 85:277-284.

[12]Huang, S.Q., Ning, Z.X., 2010. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. Int. J. Biol. Macromol., 47(3):336-341.

[13]Kim, S.S., Lee, J.S., Cho, J.Y., et al., 2010a. Effects of C/N ratio and trace elements on mycelial growth and exo-polysaccharide production of Tricholoma matsutake. Biotechnol. Bioproc. E, 15(2):293-298.

[14]Kim, S.S., Lee, J.S., Cho, J.Y., et al., 2010b. Process development for mycelial growth and polysaccharide production in Tricholoma matsutake liquid culture. J. Biosci. Bioeng., 109(4):351-355.

[15]Li, Y., Fabiano-Tixier, A.S., Tomao, V., et al., 2013. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason. Sonochem., 20(1):12-18.

[16]Luo, Q., Zhang, J., Yan, L., et al., 2011. Composition and antioxidant activity of water-soluble polysaccharides from Tuber indicum. J. Med. Food., 14(12):1609-1616.

[17]Lv, Y., Yang, X.B., Zhao, Y., et al., 2009. Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem., 112(3):742-746.

[18]Murphey, J.M., Spayd, S.E., Powers, J.R., 1989. Effect of grape maturation on soluble protein characteristics of Gewurztraminer and White Riesling juice and wine. Am. J. Enol. Viticult., 40(3):199-207.

[19]Pingret, D., Durand, G., Fabiano-Tixier, A., et al., 2012. Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation. J. Agric. Food Chem., 60(31):7761-7768.

[20]Smironff, N., Cumbes, Q.J., 1989. Hyroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4):1051-1060.

[21]Tursun, K., Zhan, R., Zhang, H., et al., 2010. Study on antioxidant activity of Acroptilon repens. Lett. Biol., 21(3):406-411 (in Chinese).

[22]Wang, N.N., Zhang, Y., Wang, X.P., et al., 2016. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods. Int. J. Biol. Macromol., 83:103-110.

[23]Wang, Y.F., Yang, Z.W., Wei, X.L., 2012. Antioxidant activities potential of tea polysaccharide fractions obtained by ultrafiltration. Int. J. Biol. Macromol., 50(3):558-564.

[24]Xu, F., Jabasini, M., Baba, Y., 2005. Screening of mixed poly (ethylene oxide) solutions for microchip separation of double-stranded DNA using an orthogonal design approach. Electrophoresis, 26(15):3013-3020.

[25]Yang, S., Ren, X.D., Sheng, J.X., et al., 2010. Preparation and the antitumor activity in vitro of polysaccharides from Tricholoma matsutake. W. J. Microbiol. Biotechnol., 26(3):497-503.

[26]Ye, C., Han, N., Teng, F.K., et al., 2013. Extraction optimization of polysaccharides of Schisandrae Fructus and evaluation of their analgesic activity. Int. J. Biol. Macromol., 57(6):291-296.

[27]Ye, L.B., Zhang, J.S., Yang, Y., et al., 2009. Structural characterisation of a heteropolysaccharide by NMR spectra. Food Chem., 112(4):962-966.

[28]Yin, X.L., You, Q.H., Jiang, Z.H., 2009. Extraction and purification of Tricholoma matsutake polysaccharides. China Brewing, 211(10):171-173.

[29]Yin, X.L., You, Q.H., Jiang, Z.H., 2011. Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydr. Polym., 86(3):1358-1364.

[30]You, L.J., Gao, Q., Feng, M.Y., et al., 2013. Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chem., 138(4):2242-2249.

[31]You, Q.H., Yin, X.L., Ji, C.W., 2014. Pulsed counter-current ultrasound-assisted extraction and characterization of polysaccharides from Boletus edulis. Carbohydr. Polym., 101(1):379-385.

[32]Zhang, W.J., 1999. Biochemical Research Technology on Glycoconjugates, 2nd Ed. Zhejiang University Press, Hangzhou (in Chinese).

[33]Zhao, Z., Xu, X., Ye, Q., et al., 2013. Ultrasound extraction optimization of Acanthopanax senticosus polysaccharides and its antioxidant activity. Int. J. Biol. Macromol., 59(4):290-294.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE