Full Text:  <522>

Summary:  <207>

CLC number: R392

On-line Access: 2017-04-05

Received: 2016-10-13

Revision Accepted: 2017-01-07

Crosschecked: 2017-02-08

Cited: 0

Clicked: 643

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bin Wei

http://orcid.org/0000-0002-2731-489X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.4 P.277-288

10.1631/jzus.B1600460


Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection


Author(s):  Jie Zhang, Huan Liu, Bin Wei

Affiliation(s):  State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China

Corresponding email(s):   weibin@wh.iov.cn

Key Words:  Herpes simplex virus type 1, Adaptive immunity, T cells, Vaccine


Share this article to: More |Next Article >>>

Jie Zhang, Huan Liu, Bin Wei. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection[J]. Journal of Zhejiang University Science B, 2017, 18(1): 277-288.

@article{title="Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection",
author="Jie Zhang, Huan Liu, Bin Wei",
journal="Journal of Zhejiang University Science B",
volume="18",
number="4",
pages="277-288",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600460"
}

%0 Journal Article
%T Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection
%A Jie Zhang
%A Huan Liu
%A Bin Wei
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 4
%P 277-288
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer

TY - JOUR
T1 - Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection
A1 - Jie Zhang
A1 - Huan Liu
A1 - Bin Wei
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 4
SP - 277
EP - 288
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -


Abstract: 
herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of t cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

一型单纯疱疹病毒感染与T淋巴细胞免疫反应

概要:文章概述了一型单纯疱疹病毒基因组的组成和在宿主细胞的生活周期,以及感染时引起的与人类相关的疾病;阐述了一型单纯疱疹病毒感染时引起的CD4和CD8阳性T淋巴细胞的免疫反应;以及CD8阳性T淋巴细胞的功能耗竭;简要探讨了一型单纯疱疹病毒的疫苗研发的相关策略和前景;方便读者理解HSV-1感染和T淋巴细胞免疫的关系。

关键词:一型单纯疱疹病毒;适应性免疫;T淋巴细胞;疫苗

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akira, S., Uematsu, S., Takeuchi, O., 2006. Pathogen recognition and innate immunity. Cell, 124(4):783-801.

[2]Allen, S.J., Hamrah, P., Gate, D., et al., 2011. The role of LAT in increased CD8+ T cell exhaustion in trigeminal ganglia of mice latently infected with herpes simplex virus 1. J. Virol., 85(9):4184-4197.

[3]Aloisi, F., 1999. The role of microglia and astrocytes in CNS immune surveillance and immunopathology. In: Matsas, R., Tsacopoulos, M. (Eds.), The Functional Roles of Glial Cells in Health and Disease. Springer Science+Business Media, New York, p.123-133.

[4]Aloisi, F., 2001. Immune function of microglia. Glia, 36(2): 165-179.

[5]Aloisi, F., Ria, F., Adorini, L., 2000. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today, 21(3): 141-147.

[6]Anglen, C.S., Truckenmiller, M.E., Schell, T.D., et al., 2003. The dual role of CD8+ T lymphocytes in the development of stress-induced herpes simplex encephalitis. J. Neuroimmunol., 140(1-2):13-27.

[7]Ariotti, S., Hogenbirk, M.A., Dijkgraaf, F.E., et al., 2014. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science, 346(6205): 101-105.

[8]Azadfar, S., Cheraghali, F., Moradi, A., et al., 2014. Herpes simplex virus meningitis in children in south east of Caspian sea, Iran. Jundishapur J. Microbiol., 7(1):e8599.

[9]Bachmann, M.F., Barner, M., Viola, A., et al., 1999. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur. J. Immunol., 29(1):291-299.

[10]Barber, D.L., Wherry, E.J., Masopust, D., et al., 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439(7077):682-687.

[11]Barr, D.P., Belz, G.T., Reading, P.C., et al., 2007. A role for plasmacytoid dendritic cells in the rapid IL-18-dependent activation of NK cells following HSV-1 infection. Eur. J. Immunol., 37(5):1334-1342.

[12]Beffert, U., Bertrand, P., Champagne, D., et al., 1998. HSV-1 in brain and risk of Alzheimer’s disease. Lancet, 351(9112):1330-1331.

[13]Bengsch, B., Seigel, B., Ruhl, M., et al., 2010. Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation. PLoS Pathog., 6(6):e1000947.

[14]Bradshaw, M.J., Venkatesan, A., 2016. Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics, 13(3):493-508.

[15]Buela, K.A., Hendricks, R.L., 2015. Cornea-infiltrating and lymph node dendritic cells contribute to CD4+ T cell expansion after herpes simplex virus-1 ocular infection. J. Immunol., 194(1):379-387.

[16]Burrel, S., Boutolleau, D., Azar, G., et al., 2013. Phenotypic and genotypic characterization of acyclovir-resistant corneal HSV-1 isolates from immunocompetent patients with recurrent herpetic keratitis. J. Clin. Virol., 58(1): 321-324.

[17]Callan, M.F., Tan, L., Annels, N., et al., 1998. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to epstein-barr virus in vivo. J. Exp. Med., 187(9):1395-1402.

[18]Cerwenka, A., Morgan, T.M., Dutton, R.W., 1999. Naive, effector, and memory CD8 T cells in protection against pulmonary influenza virus infection: homing properties rather than initial frequencies are crucial. J. Immunol., 163(10):5535-5543.

[19]Chentoufi, A.A., Binder, N.R., Berka, N., et al., 2008. Asymptomatic human CD4+ cytotoxic T-cell epitopes identified from herpes simplex virus glycoprotein B. J. Virol., 82(23):11792-11802.

[20]Chentoufi, A.A., Dasgupta, G., Christensen, N.D., et al., 2010. A novel HLA (HLA-A*0201) transgenic rabbit model for preclinical evaluation of human CD8+ T cell epitope-based vaccines against ocular herpes. J. Immunol., 184(5): 2561-2571.

[21]Chi, C.C., Wang, S.H., Delamere, F.M., et al., 2015. Interventions for prevention of herpes simplex labialis (cold sores on the lips). Cochrane Database Syst. Rev., (8):CD010095.

[22]Coleman, J.L., Shukla, D., 2013. Recent advances in vaccine development for herpes simplex virus types I and II. Hum. Vaccin Immunother., 9(4):729-735.

[23]Dasgupta, G., Chentoufi, A.A., Kalantari, M., et al., 2012. Immunodominant “asymptomatic” herpes simplex virus 1 and 2 protein antigens identified by probing whole-orfome microarrays with serum antibodies from seropositive asymptomatic versus symptomatic individuals. J. Virol., 86(8):4358-4369.

[24]Efstathiou, S., Preston, C.M., 2005. Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res., 111(2):108-119.

[25]Egan, K.P., Wu, S., Wigdahl, B., et al., 2013. Immunological control of herpes simplex virus infections. J. Neurovirol., 19(4):328-345.

[26]Eisenstein, L.E., Calio, A.J., Cunha, B.A., 2004. Herpes simplex (HSV-1) aseptic meningitis. Heart Lung J. Acute Critical Care, 33(3):196-197.

[27]Eriksson, C.E., Studahl, M., Bergstrom, T., 2016. Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis. J. Neuroimmunol., 295-296:130-138.

[28]Faron, M.L., Ledeboer, N.A., Patel, A., et al., 2016. Multicenter evaluation of meridian bioscience HSV 1&2 molecular assay for detection of herpes simplex virus 1 and 2 from clinical cutaneous and mucocutaneous specimens. J. Clin. Microbiol., 54(8):2008-2013.

[29]Fong, C.Y., Aye, A.M., Peyman, M., et al., 2014. Neonatal herpes simplex virus type-1 central nervous system disease with acute retinal necrosis. Pediatr. Infect. Dis. J., 33(4):424-426.

[30]Fourcade, J., Sun, Z., Benallaoua, M., et al., 2010. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med., 207(10):2175-2186.

[31]Frank, G.M., Buela, K.A., Maker, D.M., et al., 2012. Early responding dendritic cells direct the local NK response to control herpes simplex virus 1 infection within the cornea. J. Immunol., 188(3):1350-1359.

[32]Gebhardt, T., Wakim, L.M., Eidsmo, L., et al., 2009. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol., 10(5):524-530.

[33]Groettrup, M., Kraft, R., Kostka, S., et al., 1996. A third interferon-γ-induced subunit exchange in the 20S proteasome. Eur. J. Immunol., 26(4):863-869.

[34]Harkness, J.M., Kader, M., Deluca, N.A., 2014. Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells. J. Virol., 88(12):6847-6861.

[35]Hashido, M., Kawana, T., Matsunaga, Y., et al., 1999. Changes in prevalence of herpes simplex virus type 1 and 2 antibodies from 1973 to 1993 in the rural districts of Japan. Microbiol. Immunol., 43(2):177-180.

[36]Hendricks, R.L., Janowicz, M., Tumpey, T.M., 1992. Critical role of corneal langerhans cells in the CD4- but not CD8-mediated immunopathology in herpes simplex virus-1-infected mouse corneas. J. Immunol., 148(8): 2522-2529.

[37]Hoshino, Y., Pesnicak, L., Cohen, J.I., et al., 2007. Rates of reactivation of latent herpes simplex virus from mouse trigeminal ganglia ex vivo correlate directly with viral load and inversely with number of infiltrating CD8+ T cells. J. Virol., 81(15):8157-8164.

[38]Hudson, S.J., Streilein, J.W., 1994. Functional cytotoxic T cells are associated with focal lesions in the brains of SJL mice with experimental herpes simplex encephalitis. J. Immunol., 152(11):5540-5547.

[39]Itzhaki, R.F., Lin, W.R., Wilcock, G.K., et al., 1998. HSV-1 and risk of Alzheimer’s disease. Lancet, 352(9123):238.

[40]Jiang, X., Chentoufi, A.A., Hsiang, C., et al., 2011. The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J. Virol., 85(5):2325-2332.

[41]Jing, L., Haas, J., Chong, T.M., et al., 2012. Cross-presentation and genome-wide screening reveal candidate T cells antigens for a herpes simplex virus type 1 vaccine. J. Clin. Invest., 122(2):654-673.

[42]Johnson, A.J., Chu, C.F., Milligan, G.N., 2008. Effector CD4+ T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J. Virol., 82(19):9678-9688.

[43]Kaech, S.M., Wherry, E.J., Ahmed, R., 2002a. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol., 2(4):251-262.

[44]Kaech, S.M., Hemby, S., Kersh, E., et al., 2002b. Molecular and functional profiling of memory CD8 T cell differentiation. Cell, 111(6):837-851.

[45]Kalia, V., Sarkar, S., Ahmed, R., 2010. CD8 T-cell memory differentiation during acute and chronic viral infections. In: Zanetti, M., Schoenberger, S.P. (Eds.), Memory T Cells. Springer Science+Business Media, New York, p.79-95.

[46]Kastrukoff, L.F., Lau, A.S., Kim, S.U., 1987. Multifocal CNS demyelination following peripheral inoculation with herpes simplex virus type 1. Ann. Neurol., 22(1):52-59.

[47]Kastrukoff, L.F., Lau, A.S., Leung, G.Y., et al., 1993. Contrasting effects of immunosuppression on herpes simplex virus type I (HSV I) induced central nervous system (CNS) demyelination in mice. J. Neurol. Sci., 117(1-2):148-158.

[48]Kawai, T., Akira, S., 2006. Innate immune recognition of viral infection. Nat. Immunol., 7(2):131-137.

[49]Khanna, K.M., Bonneau, R.H., Kinchington, P.R., et al., 2003. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity, 18(5):593-603.

[50]Khanna, K.M., Lepisto, A.J., Decman, V., et al., 2004. Immune control of herpes simplex virus during latency. Curr. Opin. Immunol., 16(4):463-469.

[51]Khoury-Hanold, W., Yordy, B., Kong, P., et al., 2016. Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe, 19(6): 788-799.

[52]Kieff, E.D., Bachenheimer, S.L., Roizman, B., 1971. Size, composition, and structure of the deoxyribonucleic acid of herpes simplex virus subtypes 1 and 2. J. Virol., 8(2): 125-132.

[53]Kim, M., Osborne, N.R., Zeng, W., et al., 2012. Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes. J. Immunol., 188(9):4158-4170.

[54]Kodukula, P., Liu, T., Rooijen, N.V., et al., 1999. Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. J. Immunol., 162(5): 2895-2905.

[55]Kohl, S., 1991. Role of antibody-dependent cellular cytotoxicity in defense against herpes simplex virus infections. Rev. Infect. Dis., 13(1):108-114.

[56]Krichevskaia, G.I., Andzhelov, V.O., Katargina, L.A., et al., 2005. Reactivation of persistent herpes virus infection as a factor of endogenous uveitis in children. Vestn. Oftalmol., 121(2):22-24 (in Russian).

[57]Krzysiek, R., de Goër de Herve, M.G., Yang, H., et al., 2013. Tissue competence imprinting and tissue residency of CD8 T cells. Front. Immunol., 4:283.

[58]Kukhanova, M.K., Korovina, A.N., Kochetkov, S.N., 2014. Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc.), 79(13):1635-1652.

[59]Kuklin, N.A., Daheshia, M., Chun, S., et al., 1998. Role of mucosal immunity in herpes simplex virus infection. J. Immunol., 160(12):5998-6003.

[60]Laing, K.J., Dong, L., Sidney, J., et al., 2012. Immunology in the clinic review series; focus on host responses: T cell responses to herpes simplex viruses. Clin. Exp. Immunol., 167(1):47-58.

[61]Lee, Y.J., Jameson, S.C., Hogquist, K.A., 2011. Alternative memory in the CD8 T cell lineage. Trends Immunol., 32(2):50-56.

[62]Lepisto, A.J., Frank, G.M., Xu, M., et al., 2006. CD8 T cells mediate transient herpes stromal keratitis in CD4- deficient mice. Invest. Ophthalmol. Vis. Sci., 47(8):3400-3409.

[63]Li, J., Hu, S., Zhou, L., et al., 2011. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia, 59(1):58-67.

[64]Li, J., Ye, L., Wang, X., et al., 2012. Induction of interferon-λ contributes to Toll-like receptor 3-mediated herpes simplex virus type 1 inhibition in astrocytes. J. Neurosci. Res., 90(2):399-406.

[65]Liu, T., Khanna, K.M., Chen, X., et al., 2000. CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. J. Exp. Med., 191(9): 1459-1466.

[66]Luckheeram, R.V., Zhou, R., Verma, A.D., et al., 2012. CD4+ T cells: differentiation and functions. Clin. Dev. Immunol., 2012:925135.

[67]Mackay, L.K., Stock, A.T., Ma, J.Z., et al., 2012. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. USA, 109(18):7037-7042.

[68]Manickan, E., Rouse, R.J., Yu, Z., et al., 1995a. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J. Immunol., 155(1): 259-265.

[69]Manickan, E., Francotte, M., Kuklin, N., et al., 1995b. Vaccination with recombinant vaccinia viruses expressing ICP27 induces protective immunity against herpes simplex virus through CD4+ Th1+ T cells. J. Virol., 69(8): 4711-4716.

[70]Marrack, P., Kappler, J., 1987. The T cell receptor. Science, 238(4830):1073-1079.

[71]Marten, N.W., Stohlman, S.A., Zhou, J., et al., 2003. Kinetics of virus-specific CD8+-T-cell expansion and trafficking following central nervous system infection. J. Virol., 77(4):2775-2778.

[72]Medzhitov, R., Janeway, C.Jr., 2000. Innate immunity. N. Engl. J. Med., 343(5):338-344.

[73]Melchjorsen, J., 2012. Sensing herpes: more than Toll. Rev. Med. Virol., 22(2):106-121.

[74]Menasria, R., Canivet, C., Piret, J., et al., 2015. Infiltration pattern of blood monocytes into the central nervous system during experimental herpes simplex virus encephalitis. PLoS ONE, 10(12):e0145773.

[75]Mertz, G.J., Rosenthal, S.L., Stanberry, L.R., 2003. Is herpes simplex virus type 1 (HSV-1) now more common than HSV-2 in first episodes of genital herpes? Sex. Transm. Dis., 30(10):801-802.

[76]Molesworth-Kenyon, S.J., Popham, N., Milam, A., et al., 2012. Resident corneal cells communicate with neutrophils leading to the production of IP-10 during the primary inflammatory response to HSV-1 infection. Int. J. Inflam., 2012:810359.

[77]Mora, P., Guex-Crosier, Y., Kamberi, E., et al., 2009. Acute retinal necrosis in primary herpes simplex virus type I infection. Pediatr. Infect. Dis. J., 28(2):163-164.

[78]Mosmann, T.R., Coffman, R.L., 1989. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol., 7(1): 145-173.

[79]Mosmann, T.R., Li, L., Sad, S., 1997. Functions of CD8 T-cell subsets secreting different cytokine patterns. Semin. Immunol., 9(2):87-92.

[80]Mott, K.R., Gate, D., Zandian, M., et al., 2011. Macrophage IL-12p70 signaling prevents HSV-1-induced CNS autoimmunity triggered by autoaggressive CD4+ Tregs. Invest. Ophthalmol. Vis. Sci., 52(5):2321-2333.

[81]Mott, K.R., Allen, S.J., Zandian, M., et al., 2014. CD8α dendritic cells drive establishment of HSV-1 latency. PLoS ONE, 9(4):e93444.

[82]Murali-Krishna, K., Altman, J.D., Suresh, M., et al., 1998. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity, 8(2):177-187.

[83]Murphy, E.A., Davis, J.M., Brown, A.S., et al., 2008. Effect of IL-6 deficiency on susceptibility to HSV-1 respiratory infection and intrinsic macrophage antiviral resistance. J. Interferon Cytokine Res., 28(10):589-595.

[84]Nair, A., Hunzeker, J., Bonneau, R.H., 2007. Modulation of microglia and CD8+ T cell activation during the development of stress-induced herpes simplex virus type-1 encephalitis. Brain Behav. Immun., 21(6):791-806.

[85]Nash, A.A., Quartey-Papafio, R., Wildy, P., 1980. Cell-mediated immunity in herpes simplex virus-infected mice: functional analysis of lymph node cells during periods of acute and latent infection, with reference to cytotoxic and memory cells. J. Gen. Virol., 49(2):309-317.

[86]Nicolatou-Galitis, O., Athanassiadou, P., Kouloulias, V., et al., 2006. Herpes simplex virus-1 (HSV-1) infection in radiation-induced oral mucositis. Support. Care Cancer, 14(7):753-762.

[87]Nicoll, M.P., Proenca, J.T., Efstathiou, S., 2012. The molecular basis of herpes simplex virus latency. FEMS Microbiol. Rev., 36(3):684-705.

[88]Nieuwenhuis, R.F., van Doornum, G.J., Mulder, P.G., et al., 2006. Importance of herpes simplex virus type-1 (HSV-1) in primary genital herpes. Acta Derm. Venereol., 86(2): 129-134.

[89]Noisakran, S., Carr, D.J., 1999. Lymphocytes delay kinetics of HSV-1 reactivation from in vitro explants of latent infected trigeminal ganglia. J. Neuroimmunol., 95(1-2): 126-135.

[90]Paladino, P., Mossman, K.L., 2009. Mechanisms employed by herpes simplex virus 1 to inhibit the interferon response. J. Interferon Cytokine Res., 29(9):599-607.

[91]Paludan, S.R., Bowie, A.G., Horan, K.A., et al., 2011. Recognition of herpesviruses by the innate immune system. Nat. Rev. Immunol., 11(2):143-154.

[92]Paul, W.E., Seder, R.A., 1994. Lymphocyte responses and cytokines. Cell, 76(2):241-251.

[93]Pereira, R.A., Scalzo, A., Simmons, A., 2001. Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J. Immunol., 166(10):5869-5873.

[94]Petrovas, C., Price, D.A., Mattapallil, J., et al., 2007. SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood, 110(3): 928-936.

[95]Preston, C.M., 2000. Repression of viral transcription during herpes simplex virus latency. J. Gen. Virol., 81:1-19.

[96]Richardson, V.N., Davis, S.A., Gustafson, C.J., et al., 2013. Patterns of disease and treatment of cold sores. J. Dermatolog. Treat., 24(6):439-443.

[97]Sakuishi, K., Apetoh, L., Sullivan, J.M., et al., 2010. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med., 207(10): 2187-2194.

[98]Sant, A.J., McMichael, A., 2012. Revealing the role of CD4+ T cells in viral immunity. J. Exp. Med., 209(8):1391-1395.

[99]Schenkel, J.M., Masopust, D., 2014. Tissue-resident memory T cells. Immunity, 41(6):886-897.

[100]Schenkel, J.M., Fraser, K.A., Beura, L.K., et al., 2014. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science, 346(6205): 98-101.

[101]Schietinger, A., Greenberg, P.D., 2014. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol., 35(2):51-60.

[102]Schroder, K., Hertzog, P.J., Ravasi, T., et al., 2004. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol., 75(2):163-189.

[103]Sehrawat, S., Rouse, B.T., 2011. Tregs and infections: on the potential value of modifying their function. J. Leukoc. Biol., 90(6):1079-1087.

[104]Sepulveda, E., Brethauer, U., Rojas, J., et al., 2005. Oral ulcers in children under chemotherapy: clinical characteristics and their relation with herpes simplex virus type 1 and Candida albicans. Med. Oral Patol. Oral Cir. Bucal., 10(Suppl. 1):E1-E8.

[105]Sheridan, B.S., Cherpes, T.L., Urban, J., et al., 2009. Reevaluating the CD8 T-cell response to herpes simplex virus type 1: involvement of CD8 T cells reactive to subdominant epitopes. J. Virol., 83(5):2237-2245.

[106]Simmons, A., 1989. H-2-linked genes influence the severity of herpes simplex virus infection of the peripheral nervous system. J. Exp. Med., 169(4):1503-1507.

[107]Simmons, A., Tscharke, D.C., 1992. Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J. Exp. Med., 175(5):1337-1344.

[108]Simmons, A., Tscharke, D., Speck, P., 1992. The role of immune mechanisms in control of herpes simplex virus infection of the peripheral nervous system. Curr. Top Microbiol. Immunol., 179:31-56.

[109]Sin, J., Kim, J.J., Pachuk, C., et al., 2000. DNA vaccines encoding interleukin-8 and rantes enhance antigen-specific Th1-type CD4+ T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. J. Virol., 74(23):11173-11180.

[110]Srivastava, R., Dervillez, X., Khan, A.A., et al., 2016. The herpes simplex virus latency-associated transcript gene is associated with a broader repertoire of virus-specific exhausted CD8+ T cells retained within the trigeminal ganglia of latently infected HLA transgenic rabbits. J. Virol., 90(8):3913-3928.

[111]Stanberry, L.R., Cunningham, A.L., Mindel, A., et al., 2000. Prospects for control of herpes simplex virus disease through immunization. Clin. Infect. Dis., 30(3):549-566.

[112]Stohlman, S.A., Bergmann, C.C., Lin, M.T., et al., 1998. CTL effector function within the central nervous system requires CD4+ T cells. J. Immunol., 160(6):2896-2904.

[113]Su, C., Zhan, G., Zheng, C., 2016. Evasion of host antiviral innate immunity by HSV-1, an update. Virol. J., 13:38.

[114]Suazo, P.A., Ibanez, F.J., Retamal-Diaz, A.R., et al., 2015. Evasion of early antiviral responses by herpes simplex viruses. Mediators Inflamm., 2015:593757.

[115]Suryawanshi, A., Veiga-Parga, T., Rajasagi, N.K., et al., 2011. Role of IL-17 and Th17 cells in herpes simplex virus-induced corneal immunopathology. J. Immunol., 187(4): 1919-1930.

[116]Suvas, S., Kumaraguru, U., Pack, C.D., et al., 2003. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J. Exp. Med., 198(6): 889-901.

[117]Swiecki, M., Wang, Y., Gilfillan, S., et al., 2013. Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog., 9(10):e1003728.

[118]Tigges, M.A., Leng, S., Johnson, D.C., et al., 1996. Human herpes simplex virus (HSV)-specific CD8+ CTL clones recognize HSV-2-infected fibroblasts after treatment with IFN-γ or when virion host shutoff functions are disabled. J. Immunol., 156(10):3901-3910.

[119]Tsatsos, M., MacGregor, C., Athanasiadis, I., et al., 2016. Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin. Exp. Ophthalmol., 44(9):824-837.

[120]van Velzen, M., Missotten, T., van Loenen, F.B., et al., 2013. Acyclovir-resistant herpes simplex virus type 1 in intra-ocular fluid samples of herpetic uveitis patients. J. Clin. Virol., 57(3):215-221.

[121]Vogel, K., Thomann, S., Vogel, B., et al., 2014. Both plasmacytoid dendritic cells and monocytes stimulate natural killer cells early during human herpes simplex virus type 1 infections. Immunology, 143(4):588-600.

[122]Wagner, E.K., Bloom, D.C., 1997. Experimental investigation of herpes simplex virus latency. Clin. Microbiol. Rev., 10(3):419-443.

[123]Wherry, E.J., 2011. T cell exhaustion. Nat. Immunol., 12(6): 492-499.

[124]Wherry, E.J., Teichgraber, V., Becker, T.C., et al., 2003. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol., 4(3):225-234.

[125]Whitley, R.J., Corey, L., Arvin, A., et al., 1988. Changing presentation of herpes simplex virus infection in neonates. J. Infect. Dis., 158(1):109-116.

[126]Wiesel, M., Walton, S., Richter, K., et al., 2009. Virus-specific CD8 T cells: activation, differentiation and memory formation. APMIS, 117(5-6):356-381.

[127]Wuest, T.R., Carr, D.J., 2008. The role of chemokines during herpes simplex virus-1 infection. Front. Biosci., 13: 4862-4872.

[128]Xu, F., Schillinger, J.A., Sternberg, M.R., et al., 2002. Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the united states, 1988-1994. J. Infect. Dis., 185(8):1019-1024.

[129]Yasukawa, M., Zarling, J.M., 1984. Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA class II MB and DR antigens. J. Immunol., 133(1):422-427.

[130]Yun, H., Rowe, A.M., Lathrop, K.L., et al., 2014. Reversible nerve damage and corneal pathology in murine herpes simplex stromal keratitis. J. Virol., 88(14):7870-7880.

[131]Zajac, A.J., Blattman, J.N., Murali-Krishna, K., et al., 1998. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med., 188(12): 2205-2213.

[132]Zendri, E., Venturi, C., Ricci, R., et al., 2005. Primary cutaneous plasmacytoma: a role for a triggering stimulus? Clin. Exp. Dermatol., 30(3):229-231.

[133]Zhang, N., Bevan, M.J., 2011. CD8+ T cells: foot soldiers of the immune system. Immunity, 35(2):161-168.

[134]Zheng, M., Fields, M.A., Liu, Y., et al., 2008. Neutrophils protect the retina of the injected eye from infection after anterior chamber inoculation of HSV-1 in BALB/c mice. Invest. Ophthalmol. Vis. Sci., 49(9):4018-4025.

[135]Zheng, S.G., 2013. Regulatory T cells vs Th17: differentiation of Th17 versus Treg, are the mutually exclusive? Am. J. Clin. Exp. Immunol., 2(1):94-106.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952276; Fax: +86-571-87952331; E-mail: jzus@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE