Full Text:   <465>

Summary:  <153>

CLC number: Q255; S896.3

On-line Access: 2018-12-03

Received: 2018-04-29

Revision Accepted: 2018-09-09

Crosschecked: 2018-11-21

Cited: 0

Clicked: 830

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Li-rong Shen

https://orcid.org/0000-0002-3197-9245

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.12 P.960-972

10.1631/jzus.B1800257


Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line


Author(s):  Chen-min Jiang, Xin Liu, Chun-xue Li, Hao-cheng Qian, Di Chen, Chao-qiang Lai, Li-rong Shen

Affiliation(s):  College of Biosystems Engineering and Food Science, Zhejiang University / Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs / Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, China; more

Corresponding email(s):   Shenlirong@zju.edu.cn

Key Words:  Major royal jelly protein, Human embryonic lung fibroblast (HFL-I) cell line, Anti-senescence, Relative proliferation activity, Telomere length, Molecular mechanism


Chen-min Jiang, Xin Liu, Chun-xue Li, Hao-cheng Qian, Di Chen, Chao-qiang Lai, Li-rong Shen. Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line[J]. Journal of Zhejiang University Science B, 2018, 19(12): 960-972.

@article{title="Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line",
author="Chen-min Jiang, Xin Liu, Chun-xue Li, Hao-cheng Qian, Di Chen, Chao-qiang Lai, Li-rong Shen",
journal="Journal of Zhejiang University Science B",
volume="19",
number="12",
pages="960-972",
year="2018",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1800257"
}

%0 Journal Article
%T Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line
%A Chen-min Jiang
%A Xin Liu
%A Chun-xue Li
%A Hao-cheng Qian
%A Di Chen
%A Chao-qiang Lai
%A Li-rong Shen
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 12
%P 960-972
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1800257

TY - JOUR
T1 - Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line
A1 - Chen-min Jiang
A1 - Xin Liu
A1 - Chun-xue Li
A1 - Hao-cheng Qian
A1 - Di Chen
A1 - Chao-qiang Lai
A1 - Li-rong Shen
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 12
SP - 960
EP - 972
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1800257


Abstract: 
Royal jelly (RJ) from honeybee has been widely used as a health promotion supplement. The major royal jelly proteins (MRJPs) have been identified as the functional component of RJ. However, the question of whether MRJPs have anti-senescence activity for human cells remains. Human embryonic lung fibroblast (HFL-I) cells were cultured in media containing no MRJPs (A), MRJPs at 0.1 mg/ml (B), 0.2 mg/ml (C), or 0.3 mg/ml (D), or bovine serum albumin (BSA) at 0.2 mg/ml (E). The mean population doubling levels of cells in media B, C, D, and E were increased by 12.4%, 31.2%, 24.0%, and 10.4%, respectively, compared with that in medium A. The cells in medium C also exhibited the highest relative proliferation activity, the lowest senescence, and the longest telomeres. Moreover, MRJPs up-regulated the expression of superoxide dismutase-1 (SOD1) and down-regulated the expression of mammalian target of rapamycin (MTOR), catenin beta like-1 (CTNNB1), and tumor protein p53 (TP53). Raman spectra analysis showed that there were two unique bands related to DNA synthesis materials, amide carbonyl group vibrations and aromatic hydrogens. These results suggest that MRJPs possess anti-senescence activity for the HFL-I cell line, and provide new knowledge illustrating the molecular mechanism of MRJPs as anti-senescence factors.

蜂王浆主蛋白对人胚肺成纤维细胞HFL-I的抗衰老作用及其作用机制研究

目的:探讨不同浓度蜂王浆主蛋白(MRJPs)对人胚肺成纤维细胞HFL-I的抗衰老作用,并对其可能的分子机理进行预测.
创新点:本实验采用拉曼光谱法探究添加MRJPs对HFL-I细胞内成分的影响.实验发现添加MRJPs的 HFL-I与对照组的HFL-I的拉曼光谱图中,与DNA和蛋白质合成相关的拉曼峰发生了变化.该发现在未来可作为鉴定衰老HFL-I的一种手段.
方法:实验以蜂王浆为原料,利用透析法得到MRJPs.通过对不同浓度MRJPs处理的HFL-I进行细胞形态学观察,测定HFL-I生命周期以及检测其β-半乳糖苷酶活性,评价了MRJPs的抗衰老效果.并且通过MTT法考察了不同浓度MRJPs对HFL-I的促增殖作用.同时,实验一方面采用实时定量聚合酶链反应(qPCR)测量了不同浓度MRJPs处理的HFL-I的细胞端粒相对长度以及MTOR、SOD1、CTNNB1、TP53四种衰老相关基因的相对表达量;另一方面还通过拉曼光谱实验法,进一步探索了MRJPs抗衰老的分子机理.
结论:本实验结果显示,添加MRJPs能降低HFL-I衰老细胞所占比例,显著延长HFL-I的生命周期,一定量的MRJPs还能够促进HFL-I的增殖.此外,MRJPs还能减缓细胞端粒长度的缩短,上调衰老相关基因SOD1的表达,下调抗衰老基因MTOR、CTNNB1TP53的表达.通过MRJPs添加组细胞的拉曼光谱上出现的独特的碱基、酰胺羰基和芳香氢峰,推测MRJPs的抗衰老作用可能与促进DNA及蛋白质在细胞中的合成密切相关.

关键词:蜂王浆主蛋白;人胚肺成纤维细胞;抗衰老;拉曼光谱;端粒长度;分子机理

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allsopp RC, Vaziri H, Patterson C, et al., 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA, 89(21):10114-10118.

[2]Bai H, Li HY, Han ZB, et al., 2015. Label-free assessment of replicative senescence in mesenchymal stem cells by Raman microspectroscopy. Biomed Opt Express, 6(11):4493-4500.

[3]Blackburn EH, 2001. Switching and signaling at the telomere. Cell, 106(6):661-673.

[4]Brack AS, Conboy MJ, Roy S, et al., 2007. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science, 317(5839):807-810.

[5]Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1-2):248-254.

[6]Buschman HP, Marple ET, Wach ML, et al., 2000. In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal Chem, 72(16):3771-3775.

[7]Buttstedt A, Moritz RFA, Erler S, 2014. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family. Biol Rev, 89(2):255-269.

[8]Chan SRWL, Blackburn EH, 2004. Telomeres and telomerase. Philos Trans Roy Soc B Biol Sci, 359(1441):109-122.

[9]Chen D, Xin XX, Qian HC, et al., 2016. Evaluation of the major royal jelly proteins as an alternative to fetal bovine serum in culturing human cell lines. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 17(6):476-483.

[10]Chen JP, Xu DG, Yu XY, et al., 2014. Discrepancy between the effects of morronside on apoptosis in human embryonic lung fibroblast cells and lung cancer A549 cells. Oncol Lett, 7(4):927-932.

[11]Cho KA, Ryu SJ, Oh YS, et al., 2004. Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem, 279(40):42270-42278.

[12]Cihan YB, Ozturk A, Gokalp SS, 2013. Protective role of royal jelly against radiation-induced oxidative stress in rats. UHOD-Uluslar Hematol, 23(2):79-87.

[13]Cristofalo VJ, 1988. Cellular biomarkers of aging. Exp Gerontol, 23(4-5):297-305.

[14]Cristofalo VJ, Pignolo RJ, 1993. Replicative senescence of human fibroblast-like cells in culture. Physiol Rev, 73(3):617-638.

[15]D'Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al., 2003. A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426(6963):194-198.

[16]Damalas A, Kahan S, Shtutman M, et al., 2001. Deregulated β-catenin induces a p53-and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J, 20(17):4912-4922.

[17]Debacq-Chainiaux F, Pascal T, Boilan E, et al., 2008. Screening of senescence-associated genes with specific DNA array reveals the role of IGFBP-3 in premature senescence of human diploid fibroblasts. Free Radic Biol Med, 44(10):1817-1832.

[18]Debacq-Chainiaux F, Erusalimsky JD, Campisi J, et al., 2009. Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc, 4(12):1798-1806.

[19]Dimri GP, Lee X, Basile G, et al., 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA, 92(20):9363-9367.

[20]Drapeau MD, Albert S, Kucharski R, et al., 2006. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Res, 16(11):1385-1394.

[21]Elchuri S, Oberley TD, Qi WB, et al., 2005. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene, 24(3):367-380.

[22]Ershova ES, Sergeeva VA, Chausheva AI, et al., 2016. Toxic and DNA damaging efforts of a functionalized fullerene in human embryonic lung fibroblasts. Mutat Res-Genet Toxicol Environ Mutagen, 805:46-57.

[23]Foyer CH, Faragher R, Thornalley P, 2009. Redox Metabolism and Longevity Relationships in Animals and Plants. Taylor & Francis Group, New York, USA.

[24]Gewirtz DA, Holt SE, Elmore LW, 2008. Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol, 76(8):947-957.

[25]Harley CB, 1991. Telomere loss: mitotic clock or genetic time bomb? Mutat Res, 256(2-6):271-282.

[26]Harley CB, Futcher AB, Greider CW, 1990. Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274):458-460.

[27]Hashimoto M, Kanda M, Ikeno K, et al., 2005. Oral administration of royal jelly facilitates mRNA expression of glial cell line-derived neurotrophic factor and neurofilament H in the hippocampus of the adult mouse brain. Biosci Biotechnol Biochem, 69(4):800-805.

[28]Hattori N, Ohta S, Sakamoto T, et al., 2010. Royal jelly facilitates restoration of the cognitive ability in trimethyltin-intoxicated mice. Evid-Based Complement Alternat Med, 2011:165968.

[29]Hiyama A, Sakai D, Risbud MV, et al., 2010. Enhancement of intervertebral disc cell senescence by Wnt/β-catenin signaling-induced matrix metalloproteinase expression. Arthritis Rheum, 62(10):3036-3047.

[30]Honda Y, Fujita Y, Maruyama H, et al., 2011. Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. PLoS ONE, 6(8):e23527.

[31]Husein MQ, Kridli RT, 2002. Reproductive responses following royal jelly treatment administered orally or intramuscularly into progesterone-treated Awassi ewes. Anim Reprod Sci, 74(1-2):45-53.

[32]Hwang ES, Yoon G, Kang HT, 2009. A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci, 66(15):2503-2524.

[33]Inoue SI, Koya-Miyata S, Ushio S, et al., 2003. Royal jelly prolongs the life span of C3H/HeJ mice: correlation with reduced DNA damage. Exp Gerontol, 38(9):965-969.

[34]Itahana K, Campisi J, Dimri GP, 2004. Mechanisms of cellular senescence in human and mouse cells. Biogerontology, 5(1):1-10.

[35]Itahana K, Campisi J, Dimri GP, 2007. Methods to detect biomarkers of cellular senescence. In: Tollefsbol TO (Ed.), Biological Aging: Methods and Protocols. Humana Press, Totowa, p.21-31.

[36]Jamnik P, Goranovič D, Raspor P, 2007. Antioxidative action of royal jelly in the yeast cell. Exp Gerontol, 42(7):594-600.

[37]Jeanclos E, Krolewski A, Skurnick J, et al., 1998. Shortened telomere length in white blood cells of patients with IDDM. Diabetes, 47(3):482-486.

[38]Kamakura M, 2002. Signal transduction mechanism leading to enhanced proliferation of primary cultured adult rat hepatocytes treated with royal jelly 57-kDa protein. J Biochem, 132(6):911-919.

[39]Kamakura M, 2011. Royalactin induces queen differentiation in honeybees. Nature, 473(7348):478-483.

[40]Kamakura M, Suenobu N, Fukushima M, 2001. Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochem Biophys Res Commun, 282(4):865-874.

[41]Kapahi P, Chen D, Rogers AN, et al., 2010. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab, 11(6):453-465.

[42]Kern SE, Kinzler KW, Bruskin A, et al., 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science, 252(5013):1708-1711.

[43]Kimura M, Kimura Y, Tsumura K, et al., 2003. 350-kDa royal jelly glycoprotein (apisin), which stimulates proliferation of human monocytes, bears the β1-3galactosylated N-glycan: analysis of the N-glycosylation site. Biosci Biotechnol Biochem, 67(9):2055-2058.

[44]Kitada T, Seki S, Kawakita N, et al., 1995. Telomere shortening in chronic liver diseases. Biochem Biophys Res Commun, 211(1):33-39.

[45]Krishnamurthy J, Torrice C, Ramsey MR, et al., 2004. Ink4a/Arf expression is a biomarker of aging. J Clin Invest, 114(9):1299-1307.

[46]Landis GN, Tower J, 2005. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev, 126(3):365-379.

[47]Li ZF, Chen Y, Li YZ, et al., 2013. Raman microspectroscopy as a diagnostic tool to study single living nasopharyngeal carcinoma cell lines. Biochem Cell Biol, 91(3):182-186.

[48]Liu HJ, Fergusson MM, Castilho RM, et al., 2007. Augmented Wnt signaling in a mammalian model of accelerated aging. Science, 317(5839):803-806.

[49]Majtán J, Kováčová E, Bíliková K, et al., 2006. The immunostimulatory effect of the recombinant apalbumin 1–major honeybee royal jelly protein–on TNFα release. Int Immunopharmacol, 6(2):269-278.

[50]Malecová B, Ramser J, O'Brien JK, et al., 2003. Honeybee (Apis mellifera L.) mrjp gene family: computational analysis of putative promoters and genomic structure of mrjp1, the gene coding for the most abundant protein of larval food. Gene, 303:165-175.

[51]Mannoor MK, Shimabukuro I, Tsukamotoa M, et al., 2009. Honeybee royal jelly inhibits autoimmunity in SLE-prone NZB×NZW F1 mice. Lupus, 18(1):44-52.

[52]Mao CD, Hoang P, DiCorleto PE, 2001. Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J Biol Chem, 276(28):26180-26188.

[53]Matsuo M, 2004. Aging and oxidative stress resistance in human fibroblasts. J Clin Biochem Nutr, 35(2):63-70.

[54]May P, May E, 1999. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene, 18(53):7621-7636.

[55]Movasaghi Z, Rehman S, Rehman IU, 2007. Raman spectroscopy of biological tissues. Appl Spectrosc Rev, 42(5):493-541.

[56]Murillo-Ortiz B, Albarrán-Tamayo F, López-Briones S, et al., 2013. Increased telomere length and proliferative potential in peripheral blood mononuclear cells of adults of different ages stimulated with concanavalin A. BMC Geriatr, 13:99.

[57]Narita Y, Ohta S, Suzuki KM, et al., 2009. Effects of long-term administration of royal jelly on pituitary weight and gene expression in middle-aged female rats. Biosci Biotechnol Biochem, 73(2):431-433.

[58]Oka H, Emori Y, Kobayashi N, et al., 2001. Suppression of allergic reactions by royal jelly in association with the restoration of macrophage function and the improvement of Th1/Th2 cell responses. Int Immunopharmacol, 1(3):521-532.

[59]Okamoto I, Taniguchi Y, Kunikata T, et al., 2003. Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sci, 73(16):2029-2045.

[60]Okuda K, Khan MY, Skurnick J, et al., 2000. Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis, 152(2):391-398.

[61]Phillips JP, Campbell SD, Michaud D, et al., 1989. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA, 86(8):2761-2765.

[62]Remolina SC, Hughes KA, 2008. Evolution and mechanisms of long life and high fertility in queen honey bees. Age, 30(2-3):177-185.

[63]Ren Q, Zeng HS, Zeng XF, 2013. Leflunomide inhibits the apoptosis of human embryonic lung fibroblasts infected by human cytomegalovirus. Eur J Med Res, 18(1):3.

[64]Salazar-Olivo LA, Paz-González V, 2005. Screening of biological activities present in honeybee (Apis mellifera) royal jelly. Toxicol In Vitro, 19(5):645-651.

[65]Salmon AB, Richardson A, Pérez VI, 2010. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med, 48(5):642-655.

[66]Sarbassov DD, Ali SM, Sabatini DM, 2005. Growing roles for the mTOR pathway. Curr Opin Cell Biol, 17(6):596-603.

[67]Schmitzová J, Klaudiny J, Albert Š, et al., 1998. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell Mol Life Sci, 54(9):1020-1030.

[68]Shen LR, Zhang LW, Ding MH, et al., 2009. Research progress on nutritional and health-care functions and Molecular mechanism of royal Jelly. J Agric Sci Technol, 11(4):41-47 (in Chinese).

[69]Shen LR, Zhang WG, Jin F, et al., 2010. Expression of recombinant AccMRJP1 protein from royal jelly of Chinese Honeybee in Pichia pastoris and its proliferation activity in an insect cell line. J Agric Food Chem, 58(16):9190-9197.

[70]Smogorzewska A, de Lange T, 2002. Different telomere damage signaling pathways in human and mouse cells. EMBO J, 21(16):4338-4348.

[71]Šver L, Oršolić N, Tadić Z, et al., 1996. A royal jelly as a new potential immunomodulator in rats and mice. Comp Immunol Microbiol Infect Dis, 19(1):31-38.

[72]Swain RJ, Jell G, Stevens MM, 2008. Non-invasive analysis of cell cycle dynamics in single living cells with Raman micro-spectroscopy. J Cell Biochem, 104(4):1427-1438.

[73]Takai H, Smogorzewska A, de Lange T, 2003. DNA damage foci at dysfunctional telomeres. Curr Biol, 13(17):1549-1556.

[74]Toussaint O, Medrano EE, von Zglinicki T, 2000. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol, 35(8):927-945.

[75]Vietti G, Ibouraadaten S, Palmai-Pallag M, et al., 2013. Towards predicting the lung fibrogenic activity of nomaterials: experimental validation of an in vitro fibroblast proliferation assay. Part Fibre Toxicol, 10:52.

[76]von Zglinicki T, Saretzki G, Ladhoff J, et al., 2005. Human cell senescence as a DNA damage response. Mech Ageing Dev, 126(1):111-117.

[77]Watanabe K, Shinmoto H, Kobori M, et al., 1998. Stimulation of cell growth in the U-937 human myeloid cell line by honey royal jelly protein. Cytotechnology, 26(1):23-27.

[78]Xin XX, Chen Y, Chen D, et al., 2016. Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila. J Agric Food Chem, 64(29):5803-5812.

[79]Xu M, Yu Q, Subrahmanyam R, et al., 2008. β-Catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol, 28(5):1713-1723.

[80]Xu ZL, Chou LS, Sun J, 2012. Effects of SiO2 nanoparticles on HFL-I activating ROS-mediated apoptosis via p53 pathway. J Appl Toxicol, 32(5):358-364.

[81]Yan XL, Dong RX, Zhang L, et al., 2005. Raman spectra of single cell from gastrointestinal cancer patients. World J Gastroenterol, 11(21):3290-3292.

[82]Yang FF, Huang W, Li YF, et al., 2013. Anti-tumor effects in mice induced by survivin-targeted siRNA delivered through polysaccharide nanoparticles. Biomaterials, 34(22):5689-5699.

[83]Zahn JM, Kim SK, 2007. Systems biology of aging in four species. Curr Opin Biotechnol, 18(4):355-359.

[84]Zamani Z, Reisi P, Alaei H, et al., 2012. Effect of royal jelly on spatial learning and memory in rat model of streptozotocin-induced sporadic Alzheimer's disease. Adv Biomed Res, 1:26.

[85]Zeng AH, Ou YY, Guo MM, et al., 2015. Human embryonic lung fibroblasts treated with artesunate exhibit reduced rates of proliferation and human cytomegalovirus infection in vitro. J Thorac Dis, 7(7):1151-1157.

[86]Zhan M, Yamaza H, Sun Y, et al., 2007. Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster. Genome Res, 17(8):1236-1243.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE