Full Text:   <2303>

Summary:  <1591>

CLC number: 

On-line Access: 2021-08-20

Received: 2020-12-09

Revision Accepted: 2021-03-19

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3776

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chunhong WANG

https://orcid.org/0000-0002-2020-1956

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2021 Vol.22 No.8 P.633-646

http://doi.org/10.1631/jzus.B2000797


LG-ESSs and HG-ESSs: underlying molecular alterations and potential therapeutic strategies


Author(s):  Chunhui LI, Chunhong WANG

Affiliation(s):  Quality Management Office, The Second Hospital of Jilin University, Changchun 130041, China; more

Corresponding email(s):   wang_ch@jlu.edu.cn

Key Words:  Low-grade endometrial stromal sarcoma (LG-ESS), High-grade endometrial stromal sarcoma (HG-ESS), Molecular genetics, Therapeutics


Chunhui LI, Chunhong WANG. LG-ESSs and HG-ESSs: underlying molecular alterations and potential therapeutic strategies[J]. Journal of Zhejiang University Science B, 2021, 22(8): 633-646.

@article{title="LG-ESSs and HG-ESSs: underlying molecular alterations and potential therapeutic strategies",
author="Chunhui LI, Chunhong WANG",
journal="Journal of Zhejiang University Science B",
volume="22",
number="8",
pages="633-646",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2000797"
}

%0 Journal Article
%T LG-ESSs and HG-ESSs: underlying molecular alterations and potential therapeutic strategies
%A Chunhui LI
%A Chunhong WANG
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 8
%P 633-646
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2000797

TY - JOUR
T1 - LG-ESSs and HG-ESSs: underlying molecular alterations and potential therapeutic strategies
A1 - Chunhui LI
A1 - Chunhong WANG
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 8
SP - 633
EP - 646
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2000797


Abstract: 
Endometrial stromal tumors (ESTs) include endometrial stromal nodule (ESN), low-grade endometrial stromal sarcoma (LG-ESS), high-grade endometrial stromal sarcoma (HG-ESS), and undifferentiated uterine sarcoma (UUS). Since these are rare tumor types, there is an unmet clinical need for the systematic therapy of advanced LG-ESS or HG-ESS. Cytogenetic and molecular advances in ESTs have shown that multiple recurrent gene fusions are present in a large proportion of LG-ESSs, and HG-ESSs are identified by the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE)-family with sequence similarity 22 (FAM22) fusion. Recently, a group of ESSs harboring both zinc finger CCCH domain-containing protein 7B (ZC3H7B)-B-cell lymphoma 6 corepressor (BCOR) fusion and internal tandem duplication (ITD) of the BCOR gene have been provisionally classified as HG-ESSs. In this review, we firstly describe current knowledge about the molecular characteristics of recurrent aberrant proteins and their roles in the tumorigenesis of LG-ESSs and HG-ESSs. Next, we summarize the possibly shared signal pathways in the tumorigenesis of LG-ESSs and HG-ESSs, and list potentially actionable targets. Finally, based on the above discussion, we propose a few promising therapeutic strategies for LG-ESSs and HG-ESSs with recurrent gene alterations.

低级别和高级别子宫内膜间质肉瘤的分子改变与治疗策略

概要:子宫内膜间质肿瘤(EST)是一组较为少见的肿瘤,包括子宫内膜间质结节(ESN)、低级别子宫内膜间质肉瘤(LG-ESS)、高级别子宫内膜间质肉瘤(HG-ESS)和未分化子宫肉瘤(UUS),其中进展期LG-ESS、HG-ESS和UUS缺少有效的全身治疗。细胞遗传学和分子生物学研究发现,多数LG-ESS和所有HG-ESS携带再现性基因改变。本文重点描述了LG-ESS和HG-ESS中已知的再现性基因改变和相应的分子改变及其在肿瘤发生发展中的作用,总结了不同分子改变可能共享的信号途径及可作用的靶点,并提出针对可作用靶点、用于LG-ESS和HG-ESS全身治疗的策略

关键词:低级别子宫内膜间质肉瘤(LG-ESS);高级别子宫内膜间质肉瘤(HG-ESS);分子遗传学;治疗

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abu-RustumNR, 2021. Uterine Neoplasms Version 1.2021. NCCN Clinical Practice Guidelines in Oncology.NCCN Guidelines®.https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1473

[2]AllenAJ, AliSM, GowenK, et al., 2017. A recurrent endometrial stromal sarcoma harbors the novel fusion JAZF1-BCORL1. Gynecol Oncol Rep, 20:51-53.

[3]AstolfiA, FioreM, MelchiondaF, et al., 2019. BCOR involvement in cancer. Epigenomics, 11(7):835-855.

[4]AttarN, KurdistaniSK, 2017. Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb Perspect Med, 7(3):a026534.

[5]AvvakumovN, CôtéJ, 2007. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene, 26(37):5395-5407.

[6]BaekMH, ParkJY, RhimCC, et al., 2016. Immunohistochemical characterization of histone deacetylase as a potential prognostic marker and therapeutic target in endometrial stromal sarcoma. Anticancer Res, 36(5):2527-2534.

[7]BirveA, SenguptaAK, BeuchleD, et al., 2001. Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development, 128(17):3371-3379.

[8]BoudreaultAA, CronierD, SelleckW, et al., 2003. Yeast Enhancer of Polycomb defines global Esa1-dependent acetylation of chromatin. Genes Dev, 17(11):1415-1428.

[9]BrandtLP, AlbersJ, HejhalT, et al., 2017. Oncogenic HrasG12V expression plus knockdown of Cdkn2a using ecotropic lentiviral vectors induces high-grade endometrial stromal sarcoma. PLoS ONE, 12(10):e0186102.

[10]BrunetA, KanaiF, StehnJ, et al., 2002. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol, 156(5):817-828.

[11]BrunettiM, GorunovaL, DavidsonB, et al., 2018. Identification of an EPC2-PHF1 fusion transcript in low-grade endometrial stromal sarcoma. Oncotarget, 9(27):19203-19208.

[12]CastañedaA, SerranoC, Hernández-TrejoJA, et al., 2017. pVHL suppresses Akt/β-catenin-mediated cell proliferation by inhibiting 14-3-3ζ expression. Biochem J, 474(16):2679-2689.

[13]ChamberlainPP, HamannLG, 2019. Development of targeted protein degradation therapeutics. Nat Chem Biol, 15(10):937-944.

[14]ChammasP, MocaviniI, di CroceL, 2020. Engaging chromatin: PRC2 structure meets function. Br J Cancer, 122(3):315-328.

[15]CheXH, ChenH, XuZM, et al., 2010. 14-3-3epsilon contributes to tumour suppression in laryngeal carcinoma by affecting apoptosis and invasion. BMC Cancer, 10:306.

[16]ChenSM, JiaoLY, ShubbarM, et al., 2018. Unique structural platforms of Suz12 dictate distinct classes of PRC2 for chromatin binding. Mol Cell, 69(5):840-852.e5.

[17]ChiangS, AliR, MelnykN, et al., 2011. Frequency of known gene rearrangements in endometrial stromal tumors. Am J Surg Pathol, 35(9):1364-1372.

[18]ChiangS, LeeCH, StewartCJR, et al., 2017. BCOR is a robust diagnostic immunohistochemical marker of genetically diverse high-grade endometrial stromal sarcoma, including tumors exhibiting variant morphology. Mod Pathol, 30(9):1251-1261.

[19]ChoiJ, BachmannAL, TauscherK, et al., 2017. DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation. Nat Struct Mol Biol, 24(12):1039-1047.

[20]ChoiYJ, JungSH, KimMS, et al., 2015. Genomic landscape of endometrial stromal sarcoma of uterus. Oncotarget, 6(32):33319-33328.

[21]ConklinCMJ, LongacreTA, 2014. Endometrial stromal tumors: the new WHO classification. Adv Anat Pathol, 21(6):383-393.

[22]ConwaySJ, 2020. Bifunctional molecules beyond PROTACs. J Med Chem, 63(6):2802-2806.

[23]Cossu-RoccaP, ContiniM, UrasMG, et al., 2012. Tyrosine kinase receptor status in endometrial stromal sarcoma: an immunohistochemical and genetic-molecular analysis. Int J Gynecol Pathol, 31(6):570-579.

[24]CotziaP, BenayedR, MullaneyK, et al., 2019. Undifferentiated uterine sarcomas represent under-recognized high-grade endometrial stromal sarcomas. Am J Surg Pathol, 43(5):662-669.

[25]DeshmukhU, BlackJ, Perez-IrizarryJ, et al., 2019. Adjuvant hormonal therapy for low-grade endometrial stromal sarcoma. Reprod Sci, 26(5):600-608.

[26]DewaeleB, PrzybylJ, QuattroneA, et al., 2014. Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma. Int J Cancer, 134(5):1112-1122.

[27]DicksonBC, LumA, SwansonD, et al., 2018. Novel EPC1 gene fusions in endometrial stromal sarcoma. Genes Chromosomes Cancer, 57(11):598-603.

[28]EryilmazJ, PanP, AmayaMF, et al., 2009. Structural studies of a four-MBT repeat protein MBTD1. PLoS ONE, 4(10):e7274.

[29]FerreiraJ, FélixA, LennerzJK, et al., 2018. Recent advances in the histological and molecular classification of endometrial stromal neoplasms. Virchows Arch, 473(6):665-678.

[30]FröhlichLF, MrakovcicM, SmoleC, et al., 2014. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells. PLoS ONE, 9(3):e91558.

[31]FroimchukE, JangY, GeK, 2017. Histone H3 lysine 4 methyltransferase KMT2D. Gene, 627:337-342.

[32]HanLS, LiuYJ, RicciottiRW, et al., 2020. A novel MBTD1-PHF1 gene fusion in endometrial stromal sarcoma: a case report and literature review. Genes Chromosomes Cancer, 59(7):428-432.

[33]HarbM, BeckerMM, VitourD, et al., 2008. Nuclear localization of cytoplasmic poly(A)-binding protein upon rotavirus infection involves the interaction of NSP3 with eIF4G and RoXaN. J Virol, 82(22):11283-11293.

[34]HashizumeR, AndorN, IharaY, et al., 2014. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med, 20(12):1394-1396.

[35]HassanAH, ProchassonP, NeelyKE, et al., 2002. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell, 111(3):369-379.

[36]HennigY, CaselitzJ, BartnitzkeS, et al., 1997. A third case of a low-grade endometrial stromal sarcoma with at(7;17)(p14~21;q11.2~21). Cancer Genet Cytogenet, 98(1):84-86.

[37]HoangLN, AnejaA, ConlonN, et al., 2017. Novel high-grade endometrial stromal sarcoma: a morphologic mimicker of myxoid leiomyosarcoma. Am J Surg Pathol, 41(1):12-24.

[38]HrzenjakA, 2016. JAZF1/SUZ12 gene fusion in endometrial stromal sarcomas. Orphanet J Rare Dis, 11:15.

[39]HrzenjakA, MoinfarF, KremserML, et al., 2006. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol Cancer Ther, 5(9):2203-2210.

[40]HsuJHR, RasmussonT, RobinsonJ, et al., 2020. EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chem Biol, 27(1):41-46.e17.

[41]HübnerJM, MüllerT, PapageorgiouDN, et al., 2019. EZHIP/CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. Neuro-Oncol, 21(7):878-889.

[42]HungMC, LinkW, 2011. Protein localization in disease and therapy. J Cell Sci, 124(Pt 20):3381-3392.

[43]JacquetK, Fradet-TurcotteA, AvvakumovN, et al., 2016. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol Cell, 62(3):409-421.

[44]KalenderME, SevincA, YilmazM, et al., 2009. Detection of complete response to imatinib mesylate (Glivec®/Gleevec®) with 18F-FDG PET/CT for low-grade endometrial stromal sarcoma. Cancer Chemother Pharmacol, 63(3):555-559.

[45]KaoYC, SungYS, ArganiP, et al., 2020. NTRK3 overexpression in undifferentiated sarcomas with YWHAE and BCOR genetic alterations. Mod Pathol, 33(7):1341-1349.

[46]KennyC, McDonaghN, LazaroA, et al., 2018. Dysregulated mitogen-activated protein kinase signalling as an oncogenic basis for clear cell sarcoma of the kidney. J Pathol, 244(3):334-345.

[47]KhotskayaYB, HollaVR, FaragoAF, et al., 2017. Targeting TRK family proteins in cancer. Pharmacol Ther, 173:58-66.

[48]KimKO, HsuAC, LeeHG, et al., 2014. Proteomic identification of 14-3-3ϵas a linker protein between pERK1/2 inhibition and BIM upregulation in human osteosarcoma cells . J Orthop Res, 32(6):848-854.

[49]KommossFKF, StichelD, SchrimpfD, et al., 2020a. DNA methylation-based profiling of uterine neoplasms: a novel tool to improve gynecologic cancer diagnostics. J Cancer Res Clin Oncol, 146(1):97-104.

[50]KommossFKF, ChangKTE, StichelD, et al., 2020b. Endometrial stromal sarcomas with BCOR-rearrangement harbor MDM2 amplifications. J Pathol Clin Res, 6(3):178-184.

[51]LaiAC, ToureM, HellerschmiedD, et al., 2016. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew Chem Int Ed Engl, 55(2):807-810.

[52]LealMF, RibeiroHF, ReyJA, et al., 2016. YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process. Oncotarget, 7(51):85393-85410.

[53]LeeCH, OuWB, Mariño-EnriquezA, et al., 2012. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci USA, 109(3):929-934.

[54]LeeCH, HoangLN, YipS, et al., 2014. Frequent expression of KIT in endometrial stromal sarcoma with YWHAE genetic rearrangement. Mod Pathol, 27(5):751-757.

[55]LeeW, TeckieS, WiesnerT, et al., 2014. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet, 46(11):1227-1232.

[56]LewisN, SoslowRA, DelairDF, et al., 2018. ZC3H7B-BCOR high-grade endometrial stromal sarcomas: a report of 17 cases of a newly defined entity. Mod Pathol, 31(4):674-684.

[57]LiH, MaXY, WangJL, et al., 2007. Effects of rearrangement and allelic exclusion of JJAZ1/SUZ12 on cell proliferation and survival. Proc Natl Acad Sci USA, 104(50):20001-20006.

[58]LiangSF, XuYH, ShenGB, et al., 2009. Quantitative protein expression profiling of 14-3-3 isoforms in human renal carcinoma shows 14-3-3 epsilon is involved in limitedly increasing renal cell proliferation.Electrophoresis, 30(23):4152-4162.

[59]LinDI, HemmerichA, EdgerlyC, et al., 2020. Genomic profiling of BCOR-rearranged uterine sarcomas reveals novel gene fusion partners, frequent CDK4 amplification and CDKN2A loss. Gynecol Oncol, 157(2):357-366.

[60]LiuRQ, GaoJ, YangY, et al., 2018. PHD finger protein 1 (PHF1) is a novel reader for histone H4R3 symmetric dimethylation and coordinates with PRMT5-WDR77/CRL4B complex to promote tumorigenesis. Nucleic Acids Res, 46(13):6608-6626.

[61]LiuTA, JanYJ, KoBS, et al., 2013. 14-3-3ε overexpression contributes to epithelial-mesenchymal transition of hepatocellular carcinoma. PLoS ONE, 8(3):e57968.

[62]MaXY, WangJL, WangJH, et al., 2017. The JAZF1-SUZ12 fusion protein disrupts PRC2 complexes and impairs chromatin repression during human endometrial stromal tumorogenesis. Oncotarget, 8(3):4062-4078.

[63]MakiseN, SekimizuM, KobayashiE, et al., 2019. Low-grade endometrial stromal sarcoma with a novel MEAF6-SUZ12 fusion. Virchows Arch, 475(4):527-531.

[64]Mariño-EnriquezA, LauriaA, PrzybylJ, et al., 2018. BCOR internal tandem duplication in high-grade uterine sarcomas. Am J Surg Pathol, 42(3):335-341.

[65]MauriD, PavlidisN, PolyzosNP, et al., 2006. Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst, 98(18):1285-1291.

[66]MeiJW, YangZY, XiangHG, et al., 2019. MicroRNA-1275 inhibits cell migration and invasion in gastric cancer by regulating vimentin and E-cadherin via JAZF1. BMC Cancer, 19:740.

[67]MicciF, PanagopoulosI, BjerkehagenB, et al., 2006. Consistent rearrangement of chromosomal band 6p21 with generation of fusion genes JAZF1/PHF1 and EPC1/PHF1 in endometrial stromal sarcoma. Cancer Res, 66(1):107-112.

[68]MicciF, GorunovaL, GatiusS, et al., 2014. MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett, 347(1):75-78.

[69]MicciF, BrunettiM, dal CinP, et al., 2017. Fusion of the genes BRD8 and PHF1 in endometrial stromal sarcoma. Genes Chromosomes Cancer, 56(12):841-845.

[70]MondenT, WondisfordFE, HollenbergAN, 1997. Isolation and characterization of a novel ligand-dependent thyroid hormone receptor-coactivating protein. J Biol Chem, 272(47):29834-29841.

[71]OppelF, KiDH, ZimmermanMW, et al., 2020. suz12 inactivation in p53- and nf1-deficient zebrafish accelerates the onset of malignant peripheral nerve sheath tumors and expands the spectrum of tumor types. Dis Model Mech, 13(8):dmm042341.

[72]PanagopoulosI, MertensF, GriffinCA, 2008. An endometrial stromal sarcoma cell line with the JAZF1/PHF1 chimera. Cancer Genet Cytogenet, 185(2):74-77.

[73]PanagopoulosI, MicciF, ThorsenJ, et al., 2012. Novel fusion of MYST/Esa1-associated factor 6 and PHF1 in endometrial stromal sarcoma. PLoS ONE, 7(6):e39354.

[74]PanagopoulosI, ThorsenJ, GorunovaL, et al., 2013. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer, 52(7):610-618.

[75]PatelRB, LiT, LiaoZ, et al., 2017. Recent translational research into targeted therapy for liposarcoma. Stem Cell Investig, 4:21.

[76]PatelSB, McCormackC, HodgeJC, 2020. Non-fusion mutations in endometrial stromal sarcomas: what is the potential impact on tumourigenesis through cell cycle dysregulation? J Clin Pathol, 73(12):830-835.

[77]PiuntiA, SmithER, MorganMAJ, et al., 2019. CATACOMB: an endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism. Sci Adv, 5(7):eaax2887.

[78]PotjewydF, TurnerAMW, BeriJ, et al., 2020. Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader. Cell Chem Biol, 27(1):47-56.e15.

[79]Prieto-GranadaCN, WiesnerT, MessinaJL, et al., 2016. Loss of H3K27me3 expression is a highly sensitive marker for sporadic and radiation-induced MPNST. Am J Surg Pathol, 40(4):479-489.

[80]PrzybylJ, KidzinskiL, HastieT, et al., 2018. Gene expression profiling of low-grade endometrial stromal sarcoma indicates fusion protein-mediated activation of the Wnt signaling pathway. Gynecol Oncol, 149(2):388-393.

[81]QinJZ, WhyteWA, AnderssenE, et al., 2012. The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development. Cell Stem Cell, 11(3):319-332.

[82]QuanP, MoinfarF, KufferathI, et al., 2014. Effects of targeting endometrial stromal sarcoma cells via histone deacetylase and PI3K/AKT/mTOR signaling. Anticancer Res, 34(6):2883-2897.

[83]RubinJB, SegalRA, 2003. Growth, survival and migration: the Trk to cancer. Cancer Treat Res, 115:1-18.

[84]SalvatierraA, TarratsA, GomezC, et al., 2006. A case of c-kit positive high-grade stromal endometrial sarcoma responding to Imatinib Mesylate. Gynecol Oncol, 101(3):545-547.

[85]SarmaK, MargueronR, IvanovA, et al., 2008. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol, 28(8):2718-2731.

[86]SchoolmeesterJK, SciallisAP, GreippPT, et al., 2015. Analysis of MDM2 amplification in 43 endometrial stromal tumors: a potential diagnostic pitfall. Int J Gynecol Pathol, 34(6):576-583.

[87]SeagleBLL, ShilpiA, BuchananS, et al., 2017. Low-grade and high-grade endometrial stromal sarcoma: a National Cancer Database study. Gynecol Oncol, 146(2):254-262.

[88]SerkiesK, Abacjew-ChmyłkoA, Wieczorek-RutkowskaM, et al., 2018. Aromatase inhibitor therapy for endometrial stromal sarcoma—two-centre experience. Ginekol Pol, 89(11):607-610.

[89]SpringLM, WanderSA, AndreF, et al., 2020. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. Lancet, 395(10226):817-827.

[90]SreekantaiahC, LiFP, WeidnerN, et al., 1991. An endometrial stromal sarcoma with clonal cytogenetic abnormalities. Cancer Genet Cytogenet, 55(2):163-166.

[91]StankunasK, BergerJ, RuseC, et al., 1998. The Enhancer of Polycomb gene of Drosophila encodes a chromatin protein conserved in yeast and mammals. Development, 125(20):4055-4066.

[92]StudachLL, MenneS, CairoS, et al., 2012. Subset of Suz12/PRC2 target genes is activated during hepatitis B virus replication and liver carcinogenesis associated with HBV X protein. Hepatology, 56(4):1240-1251.

[93]SungY, ParkS, ParkSJ, et al., 2018. Jazf1 promotes prostate cancer progression by activating JNK/Slug. Oncotarget, 9(1):755-765.

[94]ThielFC, HalmenS, 2018. Low-grade endometrial stromal sarcoma—a review. Oncol Res Treat, 41(11):687-692.

[95]UchidaC, MiwaS, KitagawaK, et al., 2005. Enhanced Mdm2 activity inhibits pRB function via ubiquitin‍‐‍dependent degradation. EMBO J, 24(1):160-169.

[96]UeyamaM, NishidaN, KorenagaM, et al., 2016. The impact of PNPLA3 and JAZF1 on hepatocellular carcinoma in non-viral hepatitis patients with type 2 diabetes mellitus. J Gastroenterol, 51(4):370-379.

[97]VerschoorAJ, FARMWarmerdam, BosseT, et al., 2018. A remarkable response to pazopanib, despite recurrent liver toxicity, in a patient with a high grade endometrial stromal sarcoma, a case report. BMC Cancer, 18:92.

[98]VilgelmAE, SalehN, Shattuck-BrandtR, et al., 2019. MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21. Sci Transl Med, 11(505):eaav7171.

[99]WadeM, LiYC, MataniAS, et al., 2012. Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells. Oncogene, 31(45):4789-4797.

[100]WienkenM, DickmannsA, NemajerovaA, et al., 2016. MDM2 associates with polycomb repressor complex 2 and enhances stemness-promoting chromatin modifications independent of p53. Mol Cell, 61(1):68-83.

[101]WongSJ, SenkovichO, ArtigasJA, et al., 2020. Structure and role of BCOR PUFD in noncanonical PRC1 assembly and disease. Biochemistry, 59(29):2718-2728.

[102]XuY, FulcinitiM, SamurMK, et al., 2020. YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood, 136(4):468-479.

[103]YangYF, LeeYC, WangYY, et al., 2019. YWHAE promotes proliferation, metastasis, and chemoresistance in breast cancer cells. Kaohsiung J Med Sci, 35(7):408-416.

[104]YaoWJ, TongS, TanJ, et al., 2019. NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. Arch Biochem Biophys, 663:101-108.

[105]ZhangCW, HanXR, YangXB, et al., 2018. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem, 151:304-314.

[106]ZhangH, DevoucouxM, SongXS, et al., 2020. Structural basis for EPC1-mediated recruitment of MBTD1 into the NuA4/TIP60 acetyltransferase complex. Cell Rep, 30(12):3996-4002.e4.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE