Full Text:   <2347>

Summary:  <1315>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 3598

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Bin LI

https://orcid.org/0000-0002-8348-7445

Junhong LÜ

https://orcid.org/0000-0003-2873-3137

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2021 Vol.22 No.11 P.966-970

http://doi.org/10.1631/jzus.B2100407


Response of Escherichia coli to hydrogen nanobubbles: an in vitro evaluation using synchrotron infrared spectroscopy


Author(s):  Jinfang LU, Jin ZHENG, Yadi WANG, Jie CHENG, Xueling LI, Jun HU, Bin LI, Junhong LÜ

Affiliation(s):  CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; more

Corresponding email(s):   lujunhong@zjlab.org.cn, libin@sinap.ac.cn

Key Words:  Molecular hydrogen, Nanobubbles, Bacteria, Infrared spectroscopy, Mechanism of action


Share this article to: More <<< Previous Article|

Jinfang LU, Jin ZHENG, Yadi WANG, Jie CHENG, Xueling LI, Jun HU, Bin LI, Junhong LÜ. Response of Escherichia coli to hydrogen nanobubbles: an in vitro evaluation using synchrotron infrared spectroscopy[J]. Journal of Zhejiang University Science B, 2021, 22(11): 966-970.

@article{title="Response of Escherichia coli to hydrogen nanobubbles: an in vitro evaluation using synchrotron infrared spectroscopy",
author="Jinfang LU, Jin ZHENG, Yadi WANG, Jie CHENG, Xueling LI, Jun HU, Bin LI, Junhong LÜ",
journal="Journal of Zhejiang University Science B",
volume="22",
number="11",
pages="966-970",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2100407"
}

%0 Journal Article
%T Response of Escherichia coli to hydrogen nanobubbles: an in vitro evaluation using synchrotron infrared spectroscopy
%A Jinfang LU
%A Jin ZHENG
%A Yadi WANG
%A Jie CHENG
%A Xueling LI
%A Jun HU
%A Bin LI
%A Junhong LÜ
%J Journal of Zhejiang University SCIENCE B
%V 22
%N 11
%P 966-970
%@ 1673-1581
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2100407

TY - JOUR
T1 - Response of Escherichia coli to hydrogen nanobubbles: an in vitro evaluation using synchrotron infrared spectroscopy
A1 - Jinfang LU
A1 - Jin ZHENG
A1 - Yadi WANG
A1 - Jie CHENG
A1 - Xueling LI
A1 - Jun HU
A1 - Bin LI
A1 - Junhong LÜ
J0 - Journal of Zhejiang University Science B
VL - 22
IS - 11
SP - 966
EP - 970
%@ 1673-1581
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2100407


Abstract: 
Hydrogen (H2)-rich water, an apparent source of molecular H2, is an emerging functional drink with many purported benefits for human health (Yang et al., 2020; Ostojic, 2021). The preventive and therapeutic effects of H2 on various pathological processes have been intensively investigated in numerous clinical trials; it is commonly believed that the beneficial effects are mainly attributed to its selective antioxidant and anti-inflammatory properties (Lee et al., 2015; Ohta, 2015; LeBaron et al., 2019; Qiu et al., 2020). In recent years, a handful of rodent studies revealed that exogenous H2 can affect the gut microbiota (Sha et al., 2018; Valdes et al., 2018). For example, H2 was reported to induce a higher abundance of butyrate-producing bacteria in a rat model of Parkinson's disease (Bordoni et al., 2019). Recent first-in-human trials have explored the effects of the long-term consumption of H2-rich water on antioxidant activity and the gut flora (Sha et al., 2018; Suzuki et al., 2018). Although these promising results suggest that the intestinal microbiota may be another plausible target for molecular H2, more studies are highly warranted to explain the mechanism(s) of H2 action on bacterial growth and functions.

大肠杆菌对氢纳米气泡的响应:使用同步红外光谱进行体外评估

目的:探究分子氢在细胞水平上的作用机制。
创新点:使用同步辐射红外光谱技术评估了氢纳米气泡在细胞水平上对大肠杆菌的影响,扩展了同步辐射红外光谱的应用范围。
方法:将大肠杆菌进行氢气纳米气泡处理后,使用同步辐射红外光谱测定其红外光谱,采用主成分分析等方法分析细胞成分的变化。
结论:氢纳米气泡处理后细胞的蛋白和脂肪酸成分发生较大改变,而核酸和多糖成分则没有明显变化。这些结果表明,氢气的作用靶点可能是细胞膜。此外,氢气分子的作用与传统的抗氧化剂(单宁)并不一致。

关键词:氢纳米气泡;同步辐射红外光谱;大肠杆菌

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alvarez-OrdóñezA, MouwenDJM, LópezM, et al., 2011. Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. J Microbiol Methods, 84(3):369-378.

[2]BordoniL, GabbianelliR, FedeliD, et al., 2019. Positive effect of an electrolyzed reduced water on gut permeability, fecal microbiota and liver in an animal model of Parkinson's disease. PLoS ONE, 14(10):e0223238.

[3]ChengJ, TangC, LiXL, et al., 2020. Hydrogen molecules can modulate enzymatic activity and structural properties of pepsin in vitro. Colloids Surf B Biointerfaces, 189:110856.

[4]HuXJ, LiuZX, WangYD, et al., 2016. Synchrotron FTIR spectroscopy reveals molecular changes in Escherichia coli upon Cu2+ exposure. Nucl Sci Tech, 27:56.

[5]LeBaronTW, KuraB, KalocayovaB, et al., 2019. A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules, 24(11):2076.

[6]LeeD, ParkS, BaeS, et al., 2015. Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury. Sci Rep, 5:16592.

[7]OhtaS, 2015. Chapter fifteen—molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol, 555:289-317.

[8]OstojicSM, 2021. Hydrogen-rich water as a modulator of gut microbiota. J Funct Foods, 78:104360.

[9]QiuXC, DongKS, GuanJZ, et al., 2020. Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. Int Immunopharmacol, 84:106517.

[10]ShaJB, ZhangSS, LuYM, et al., 2018. Effects of the long-term consumption of hydrogen-rich water on the antioxidant activity and the gut flora in female juvenile soccer players from Suzhou, China. Med Gas Res, 8(4):135-143.

[11]SuzukiA, ItoM, HamaguchiT, et al., 2018. Quantification of hydrogen production by intestinal bacteria that are specifically dysregulated in Parkinson’s disease. PLoS ONE, 13(12):e0208313.

[12]ValdesAM, WalterJ, SegalE, et al., 2018. Role of the gut microbiota in nutrition and health. BMJ, 361:k2179.

[13]WangYD, LiXL, LiuZX, et al., 2017. Discrimination of foodborne pathogenic bacteria using synchrotron FTIR microspectroscopy. Nucl Sci Tech, 28:49.

[14]YangML, DongYM, HeQN, et al., 2020. Hydrogen: a novel option in human disease treatment. Oxid Med Cell Longev, 2020:8384742.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE