CLC number:
On-line Access: 2023-07-15
Received: 2022-11-20
Revision Accepted: 2023-01-06
Crosschecked: 2023-07-17
Cited: 0
Clicked: 1159
Citations: Bibtex RefMan EndNote GB/T7714
Luhong SHEN, Yang YANG, Jiuliang ZHANG, Lanjie FENG, Qing ZHOU. Diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet[J]. Journal of Zhejiang University Science B, 2023, 24(7): 587-601.
@article{title="Diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet",
author="Luhong SHEN, Yang YANG, Jiuliang ZHANG, Lanjie FENG, Qing ZHOU",
journal="Journal of Zhejiang University Science B",
volume="24",
number="7",
pages="587-601",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200587"
}
%0 Journal Article
%T Diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet
%A Luhong SHEN
%A Yang YANG
%A Jiuliang ZHANG
%A Lanjie FENG
%A Qing ZHOU
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 7
%P 587-601
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200587
TY - JOUR
T1 - Diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet
A1 - Luhong SHEN
A1 - Yang YANG
A1 - Jiuliang ZHANG
A1 - Lanjie FENG
A1 - Qing ZHOU
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 7
SP - 587
EP - 601
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200587
Abstract: Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
[1]AdnanE, RahmanIA, FaridinHP, 2019. Relationship between insulin resistance, metabolic syndrome components and serum uric acid. Diabetes Metab Syndr Chin Res Rev, 13(3):2158-2162.
[2]AdouniK, ZouaouiO, ChahdouraH, et al., 2018. In vitro antioxidant activity, α-glucosidase inhibitory potential and in vivo protective effect of Asparagus stipularis Forssk aqueous extract against high-fructose diet-induced metabolic syndrome in rats. J Funct Foods, 47:521-530.
[3]Andres-HernandoA, LiNX, CicerchiC, et al., 2017. Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Nat Commun, 8:14181.
[4]Bars-CortinaD, SakhawatA, Piñol-FelisC, et al., 2022. Chemopreventive effects of anthocyanins on colorectal and breast cancer: a review. Semin Cancer Biol, 81:241-258.
[5]GowdV, KarimN, ShishirMRI, et al., 2019. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends Food Sci Technol, 93:81-93.
[6]HuQH, ZhangX, PanY, et al., 2012. Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochem Pharmacol, 84(1):113-125.
[7]JohnsonRJ, NakagawaT, JalalD, et al., 2013. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant, 28(9):2221-2228.
[8]JokiojaJ, LinderborgKM, KortesniemiM, et al., 2020. Anthocyanin-rich extract from purple potatoes decreases postprandial glycemic response and affects inflammation markers in healthy men. Food Chem, 310:125797.
[9]KhicharS, ChoudharyS, SinghVB, et al., 2017. Serum uric acid level as a determinant of the metabolic syndrome: a case control study. Diabetes Metab Syndr Chin Res Rev, 11(1):19-23.
[10]KirakosyanA, GutierrezE, Ramos-SolanoB, et al., 2018. The inhibitory potential of Montmorency tart cherry on key enzymes relevant to type 2 diabetes and cardiovascular disease. Food Chem, 252:142-146.
[11]KrishnanE, PandyaBJ, ChungL, et al., 2012. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol, 176(2):108-116.
[12]LuYL, WuYM, ChenXF, et al., 2021. Water extract of shepherd’s purse prevents high-fructose induced-liver injury by regulating glucolipid metabolism and gut microbiota. Food Chem, 342:128536.
[13]LuoCL, ZhouQ, YangZW, et al., 2018. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8). Food Chem, 241:23-31.
[14]MaH, HeK, ZhuJW, et al., 2019. The anti-hyperglycemia effects of Rhizoma Coptidis alkaloids: a systematic review of modern pharmacological studies of the traditional herbal medicine. Fitoterapia, 134:210-220.
[15]MasaroneM, RosatoV, DallioM, et al., 2018. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev, 2018:9547613.
[16]NakagawaT, JohnsonRJ, Andres-HernandoA, et al., 2020. Fructose production and metabolism in the kidney. J Am Soc Nephrol, 31(5):898-906.
[17]NgHY, LeeCT, LeungFF, et al., 2020. Effects of xanthine oxidase inhibitors and dapagliflozin on renal glucose and urate transporters in metabolic syndrome. Nephrol Dial Transpl, 35(S3):P0964.
[18]NishikawaT, NagataN, ShimakamiT, et al., 2020. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci Rep, 10:815.
[19]Reagan-ShawS, NihalM, AhmadN, 2008. Dose translation from animal to human studies revisited. FASEB J, 22(3):659-661.
[20]SeoKH, YokoyamaW, KimH, 2020. Comparison of polyphenol-rich wine grape seed flour-regulated fecal and blood microRNAs in high-fat, high-fructose diet-induced obese mice. J Funct Foods, 73:104147.
[21]SpínolaV, Llorent-MartínezEJ, CastilhoPC, 2019. Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): potential role in the prevention of diabetic complications. Food Res Int, 116:1229-1238.
[22]ThongnakL, ChatsudthipongV, LungkaphinA, 2020. Mitigation of renal inflammation and endoplasmic reticulum stress by vildagliptin and statins in high-fat high-fructose diet-induced insulin resistance and renal injury in rats. Biochim Biophys Acta Mol Cell Biol Lipids, 1865(9):158755.
[23]van HungT, WanatanbeJ, YonejimaY, et al., 2019. Exopolysaccharides from Leuconostoc mesenteroides attenuate chronic kidney disease in mice by protecting the intestinal barrier. J Funct Foods, 52:276-283.
[24]VilàL, RebolloA, AđalsteissonGS, et al., 2011. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment. Toxicol Appl Pharmacol, 251(1):32-40.
[25]WangL, ZhaoY, ZhouQ, et al., 2017. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). J Food Drug Anal, 25(3):607-618.
[26]WangMX, LiuYL, YangY, et al., 2015. Nuciferine restores potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Eur J Pharmacol, 747:59-70.
[27]WangYJ, ZhengYL, LuJ, et al., 2010. Purple sweet potato color suppresses lipopolysaccharide-induced acute inflammatory response in mouse brain. Neurochem Int, 56(3):424-430.
[28]YangY, ZhangZC, ZhouQ, et al., 2020a. Hypouricemic effect in hyperuricemic mice and xanthine oxidase inhibitory mechanism of dietary anthocyanins from purple sweet potato (Ipomoea batatas L.). J Funct Foods, 73:104151.
[29]YangY, ZhangJL, ZhouQ, 2020b. Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: a comprehensive review. Crit Rev Food Sci Nutr, 62(4):1119-1143.
[30]ZhangJT, SunLJ, DongYS, et al., 2019. Chemical compos
[31]itions and α-glucosidase inhibitory effects of anthocyanidins from blueberry, blackcurrant and blue honeysuckle fruits. Food Chem, 299:125102.
[32]ZhangQY, PanY, WangR, et al., 2014. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem, 25(4):420-428.
[33]ZhangZC, SuGH, LuoCL, et al., 2015. Effects of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No.8) on the serum uric acid level and xanthine oxidase activity in hyperuricemic mice. Food Funct, 6(9):3045-3055.
[34]ZhangZC, ZhouQ, YangY, et al., 2019. Highly acylated anthocyanins from purple sweet potato (Ipomoea batatas L.) alleviate hyperuricemia and kidney inflammation in hyperuricemic mice: possible attenuation effects on allopurinol. J Agric Food Chem, 67(22):6202-6211.
Open peer comments: Debate/Discuss/Question/Opinion
<1>