Full Text:   <2523>

CLC number: R542.2+1

On-line Access: 2013-07-30

Received: 2013-07-05

Revision Accepted: 2013-07-21

Crosschecked: 2013-07-08

Cited: 2

Clicked: 5920

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE B 2013 Vol.14 No.8 P.676-687

http://doi.org/10.1631/jzus.BQICC711


Advances in monoclonal antibody application in myocarditis


Author(s):  Li-na Han, Shuang He, Yu-tang Wang, Li-ming Yang, Si-yu Liu, Ting Zhang

Affiliation(s):  Department of Cardiovascular Internal Medicine, Nanlou Branch of Chinese PLA General Hospital, Beijing 100853, China

Corresponding email(s):   wangytang@sina.cn

Key Words:  Monoclonal antibody, Myocarditis, Dilated cardiomyopathy


Li-na Han, Shuang He, Yu-tang Wang, Li-ming Yang, Si-yu Liu, Ting Zhang. Advances in monoclonal antibody application in myocarditis[J]. Journal of Zhejiang University Science B, 2013, 14(8): 676-687.

@article{title="Advances in monoclonal antibody application in myocarditis",
author="Li-na Han, Shuang He, Yu-tang Wang, Li-ming Yang, Si-yu Liu, Ting Zhang",
journal="Journal of Zhejiang University Science B",
volume="14",
number="8",
pages="676-687",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.BQICC711"
}

%0 Journal Article
%T Advances in monoclonal antibody application in myocarditis
%A Li-na Han
%A Shuang He
%A Yu-tang Wang
%A Li-ming Yang
%A Si-yu Liu
%A Ting Zhang
%J Journal of Zhejiang University SCIENCE B
%V 14
%N 8
%P 676-687
%@ 1673-1581
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.BQICC711

TY - JOUR
T1 - Advances in monoclonal antibody application in myocarditis
A1 - Li-na Han
A1 - Shuang He
A1 - Yu-tang Wang
A1 - Li-ming Yang
A1 - Si-yu Liu
A1 - Ting Zhang
J0 - Journal of Zhejiang University Science B
VL - 14
IS - 8
SP - 676
EP - 687
%@ 1673-1581
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.BQICC711


Abstract: 
Monoclonal antibodies have become a part of daily preparation technologies in many laboratories. Attempts have been made to apply monoclonal antibodies to open a new train of thought for clinical treatments of autoimmune diseases, inflammatory diseases, cancer, and other immune-associated diseases. This paper is a prospective review to anticipate that monoclonal antibody application in the treatment of myocarditis, an inflammatory disease of the heart, could be a novel approach in the future. In order to better understand the current state of the art in monoclonal antibody techniques and advance applications in myocarditis, we, through a significant amount of literature research both domestic and abroad, developed a systematic elaboration of monoclonal antibodies, pathogenesis of myocarditis, and application of monoclonal antibodies in myocarditis. This paper presents review of the literature of some therapeutic aspects of monoclonal antibodies in myocarditis and dilated cardiomyopathy to demonstrate the advance of monoclonal antibody application in myocarditis and a strong anticipation that monoclonal antibody application may supply an effective therapeutic approach to relieve the severity of myocarditis in the future. Under conventional therapy, myocarditis is typically associated with congestive heart failure as a progressive outcome, indicating the need for alternative therapeutic strategies to improve long-term results. Reviewing some therapeutic aspects of monoclonal antibodies in myocarditis, we recently found that monoclonal antibodies with high purity and strong specificity can accurately act on target and achieve definite progress in the treatment of viral myocarditis in rat model and may meet the need above. However, several issues remain. The technology on how to make a higher homologous and weak immunogenic humanized or human source antibody and the treatment mechanism of monoclonal antibodies may provide solutions for these open issues. If we are to further stimulate progress in the area of clinical decision support, we must continue to develop and refine our understanding and use of monoclonal antibodies in myocarditis.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Aikawa, Y., Morimoto, K., Yamamoto, T., Chaki, H., Hashiramoto, A., Narita, H., Hirono, S., Shiozawa, S., 2008. Treatment of arthritis with a selective inhibitor of c-Fos/activator protein-1. Nat. Biotechnol., 26(7):817-823.

[2]Aretz, H.T., 1987. Myocarditis: the dallas criteria. Hum. Pathol., 18(6):619-624.

[3]Aretz, H.T., Billingham, M.E., Edwards, W.D., Factor, S.M., Fallon, J.T., Fenoglio, J.J.Jr., Olsen, E.G., Schoen, F.J., 1987. Myocarditis. A histopathologic definition and classification. Am. J. Cardiovasc. Pathol., 1(1):3-14.

[4]Brown, C.A., O'Connell, J.B., 1995. Myocarditis and idiopathic dilated cardiomyopathy. Am. J. Med., 99(3):309-314.

[5]Burgstaler, E.A., Cooper, L.T., Winters, J.L., 2007. Treatment of chronic dilated cardiomyopathy with immunoadsorption using the staphylococcal A-agarose column: a comparison of immunoglobulin reduction using two different techniques. J. Clin. Apher., 22(4):224-232.

[6]Caforio, A.L., Goldman, J.H., Haven, A.J., Baig, K.M., Mckenna, W.J., 1996. Evidence for autoimmunity to myosin and other heart-specific autoantigens in patients with dilated cardiomyopathy and their relatives. Int. J. Cardiol., 54(2):157-163.

[7]Caforio, A.L., Tona, F., Bottaro, S., Vinci, A., Dequal, G., Daliento, L., Thiene, G., Iliceto, S., 2008. Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity, 41(1):35-45.

[8]Calabrese, F., Carturan, E., Chimenti, C., Pieroni, M., Agostini, C., Angelini, A., Crosato, M., Valente, M., Boffa, G.M., Frustaci, A., et al., 2004. Overexpression of tumor necrosis factor (TNF) α and TNFα receptor I in human viral myocarditis: clinicopathologic correlations. Mod. Pathol., 17(9):1108-1118.

[9]Chen, Y.F., Han, B., Yi, Y.C., Zhang, Y., Lu, K., Sun, S.J., 2011. Effect of CTLA-4 immunoglobulin chimera protein on Foxp3+ regulatory T cells in mice with viral myocarditis. J. Clin. Pediatr., 29(7):665-669 (in Chinese).

[10]Colotta, F., Polentarutti, N., Sironi, M., Mantovani, A., 1992. Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J. Biol. Chem., 267(26):18278-18283.

[11]Cooper, L.T.Jr., 2000. Giant cell myocarditis: diagnosis and treatment. Herz, 25(3):291-298.

[12]Cooper, L.T., 2003. Myocarditis: From Bench to Bedside. Humana Press, Totowa, New Jersey.

[13]Cooper, L.T.Jr., 2009. Myocarditis. N. Engl. J. Med., 360(15):1526-1538.

[14]Cooper, L.T.Jr., Shabetai, R., 1995. Immunosuppressive therapy for myocarditis. N. Engl. J. Med., 333(25):1713-1714.

[15]Cooper, L.T.Jr., Berry, G.J., Shabetai, R., 1997. Idiopathic giant-cell myocarditis—natural history and treatment. Multicenter giant cell myocarditis study group investigators. N. Engl. J. Med., 336(26):1860-1866.

[16]Cooper, L.T., Virmani, R., Chapman, N.M., Frustaci, A., Rodeheffer, R.J., Cunningham, M.W., Mcnamara, D.M., 2006. National institutes of health-sponsored workshop on inflammation and immunity in dilated cardiomyopathy. Mayo Clin. Proc., 81(2):199-204.

[17]Cooper, L.T., Belohlavek, M., Korinek, J., Yoshifuku, S., Sengupta, P.P., Burgstaler, E.A., Winters, J.L., 2007. A pilot study to assess the use of protein a immunoadsorption for chronic dilated cardiomyopathy. J. Clin. Apher., 22(4):210-214.

[18]Corbucci, G.G., 2000. Adaptive changes in response to acute hypoxia, ischemia and reperfusion in human cardiac cell. Minerva Anestesiol., 66(7-8):523-530.

[19]Cunningham, M.W., 2004. T cell mimicry in inflammatory heart disease. Mol. Immunol., 40(14-15):1121-1127.

[20]Cunningham, M.W., 2009. Turning point in myocarditis. Circ. Res., 105(5):403-405.

[21]Emch, G.S., Hermann, G.E., Rogers, R.C., 2001. TNF-α-induced c-Fos generation in the nucleus of the solitary tract is blocked by NBQX and MK-801. Am. J. Physiol. Regul. Integr. Comp. Physiol., 281(5):R1394-R1400.

[22]Esfandiarei, M., Mcmanus, B.M., 2008. Molecular biology and pathogenesis of viral myocarditis. Annu. Rev. Pathol., 3(1):127-155.

[23]Fairweather, D., Rose, N.R., 2007. Coxsackievirus-induced myocarditis in mice: a model of autoimmune disease for studying immunotoxicity. Methods, 41(1):118-122.

[24]Fairweather, D., Kaya, Z., Shellam, G.R., Lawson, C.M., Rose, N.R., 2001. From infection to autoimmunity. J. Autoimmun., 16(3):175-186.

[25]Fairweather, D., Frisancho-Kiss, S., Yusung, S.A., Barrett, M.A., Davis, S.E., Gatewood, S.J., Njoku, D.B., Rose, N.R., 2004. Interferon-γ protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-β1, interleukin-1β, and interleukin-4 in the heart. Am. J. Pathol., 165(6):1883-1894.

[26]Fairweather, D., Frisancho-Kiss, S., Yusung, S.A., Barrett, M.A., Davis, S.E., Steele, R.A., Gatewood, S.J., Rose, N.R., 2005. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-γ and macrophage and neutrophil populations in the heart. J. Immunol., 174(1):261-269.

[27]Fan, Y., Weifeng, W., Yuluan, Y., Qing, K., Yu, P., Yanlan, H., 2011. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of coxsackievirus B3-induced viral myocarditis reduces myocardium inflammation. Virol. J., 8(1):17.

[28]Felker, G.M., Hu, W., Hare, J.M., Hruban, R.H., Baughman, K.L., Kasper, E.K., 1999. The spectrum of dilated cardiomyopathy. The johns hopkins experience with 1278 patients. Medicine (Baltimore), 78(4):270-283.

[29]Ferrans, V.J., Hibbs, R.G., Walsh, J.J., Burch, G.E., 1969. Histochemical and electron microscopical studies on the cardiac necroses produced by sympathomimetic agents. Ann. N. Y. Acad. Sci., 156(1):309-332.

[30]Filpula, D., 2007. Antibody engineering and modification technologies. Biomol. Eng., 24(2):201-215.

[31]Fleckenstein, A., Janke, J., Döring, H.J., Leder, O., 1971. Die intrazelluläre überladung mit kalzium als entscheidender kausalfaktor bei der entstehung nicht coronarogener myokard-nekrosen. Verh Dtsch Ges Kreislaufforsch, 37:345-353 (in German).

[32]Frisancho-Kiss, S., Coronado, M.J., Frisancho, J.A., Lau, V.M., Rose, N.R., Klein, S.L., Fairweather, D., 2009. Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and TREG in the heart during acute coxsackievirus-induced myocarditis. Brain Behav. Immun., 23(5):649-657.

[33]Fuse, K., Kodama, M., Okura, Y., Ito, M., Hirono, S., Kato, K., Hanawa, H., Aizawa, Y., 2000. Predictors of disease course in patients with acute myocarditis. Circulation, 102(23):2829-2835.

[34]Fuse, K., Kodama, M., Aizawa, Y., Yamaura, M., Tanabe, Y., Takahashi, K., Sakai, K., Miida, T., Oda, H., Higuma, N., 2001. Th1/Th2 balance alteration in the clinical course of a patient with acute viral myocarditis. Jpn. Circ. J., 65(12):1082-1084.

[35]Fuse, K., Kodama, M., Ito, M., Okura, Y., Kato, K., Hanawa, H., Aoki, S., Aizawa, Y., 2003. Polarity of helper T cell subsets represents disease nature and clinical course of experimental autoimmune myocarditis in rats. Clin. Exp. Immunol., 134(3):403-408.

[36]Genovese, M.C., van den Bosch, F., Roberson, S.A., Bojin, S., Biagini, I.M., Ryan, P., Sloan-Lancaster, J., 2010. LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum., 62(4):929-939.

[37]Glück, B., Schmidtke, M., Merkle, I., Stelzner, A., Gemsa, D., 2001. Persistent expression of cytokines in the chronic stage of CVB3-induced myocarditis in nmri mice. J. Mol. Cell. Cardiol., 33(9):1615-1626.

[38]Gonzales, N.R., de Pascalis, R., Schlom, J., Kashmiri, S.V., 2005. Minimizing the immunogenicity of antibodies for clinical application. Tumour Biol., 26(1):31-43.

[39]Haliday, E.M., Ramesha, C.S., Ringold, G., 1991. TNF induces c-fos via a novel pathway requiring conversion of arachidonic acid to a lipoxygenase metabolite. EMBO J., 10(1):109-115.

[40]Han, L.N., Li, T.L., Zhang, Y.J., Yang, T.S., Ding, Y., 2011a. Experimental study of MMP-2 inhibitor treatment of experimental autoimmune myocarditis in Lewis rats. Chin. J. Appl. Physiol., 27(4):452-456 (in Chinese).

[41]Han, L.N., Li, T.L., Zhang, Y.J., Yang, T.S., Ding, Y., Guo, S.L., 2011b. Immune state of Th1, Th2 and Th17 subpopulation in experimental autoimmune myocarditis. J. Sichuan Univ. (Med. Sci. Ed.), 42(6):751-756 (in Chinese).

[42]Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M., Weaver, C.T., 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 6(11):1123-1132.

[43]Huber, S.A., Job, L.P., Woodruff, J.F., 1980. Lysis of infected myofibers by coxsackievirus B-3-immune T lymphocytes. Am. J. Pathol., 98(3):681-694.

[44]Im, V., Cp, S., 1988. The c-Fos protooncogene. Cell, 51:2.

[45]Inada, K., Okada, S., Phuchareon, J., Hatano, M., Sugimoto, T., Moriya, H., Tokuhisa, T., 1998. c-Fos induces apoptosis in germinal center B cells. J. Immunol., 161(8):3853-3861.

[46]Inomata, T., Watanabe, T., Haga, M., Hirahara, H., Abo, T., Okura, Y., Hanawa, H., Kodama, M., Izumi, T., 2000. Anti-CD2 monoclonal antibodies prevent the induction of experimental autoimmune myocarditis. Jpn. Heart J., 41(4):507-517.

[47]Itoh, H., Yagi, M., Fushida, S., Tani, T., Hashimoto, T., Shimizu, K., Miwa, K., 2000. Activation of immediate early gene, c-fos, and c-jun in the rat small intestine after ischemia/reperfusion. Transplantation, 69(4):598-604.

[48]Kaya, Z., Goser, S., Buss, S.J., Leuschner, F., Ottl, R., Li, J., Volkers, M., Zittrich, S., Pfitzer, G., Rose, N.R., et al., 2008. Identification of cardiac troponin I sequence motifs leading to heart failure by induction of myocardial inflammation and fibrosis. Circulation, 118(20):2063-2072.

[49]Köhler, G., Milstein, C., 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517):495-497.

[50]Korn, T., Bettelli, E., Oukka, M., Kuchroo, V.K., 2009. IL-17 and Th17 cells. Annu. Rev. Immunol., 27(1):485-517.

[51]Kuhl, U., Pauschinger, M., Noutsias, M., Seeberg, B., Bock, T., Lassner, D., Poller, W., Kandolf, R., Schultheiss, H.P., 2005. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation, 111(7):887-893.

[52]Le, N.H., van der Wal, A., van der Bent, P., Lantinga-van Leeuwen, I.S., Breuning, M.H., van Dam, H., de Heer, E., Peters, D.J., 2005. Increased activity of activator protein-1 transcription factor components ATF2, c-Jun, and c-Fos in human and mouse autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol., 16(9):2724-2731.

[53]Li, Y., Heuser, J.S., Cunningham, L.C., Kosanke, S.D., Cunningham, M.W., 2006. Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J. Immunol., 177(11):8234-8240.

[54]Liao, Y.H., Yuan, J., Wang, Z.H., Cheng, X., Zhang, J.H., Tian, Y., Dong, J.H., Guo, H.P., Wang, M., 2005. Infectious tolerance to ADP/ATP carrier peptides induced by anti-L3T4 monoclonal antibody in dilated cardiomyopathy mice. J. Clin. Immunol., 25(4):376-384.

[55]Lin, Y., Yan, X.Y., 2004. Progression and direction of humanized antibody research. Chin. J. Biotechnol., 20(1):1-5 (in Chinese).

[56]Mabry, R., Lewis, K.E., Moore, M., Mckernan, P.A., Bukowski, T.R., Bontadelli, K., Brender, T., Okada, S., Lum, K., West, J., et al., 2010. Engineering of stable bispecific antibodies targeting IL-17a and IL-23. Protein Eng. Des. Sel., 23(3):115-127.

[57]Maisch, B., Trostel-Soeder, R., Stechemesser, E., Berg, P.A., Kochsiek, K., 1982. Diagnostic relevance of humoral and cell-mediated immune reactions in patients with acute viral myocarditis. Clin. Exp. Immunol., 48(3):533-545.

[58]Maisch, B., Deeg, P., Liebau, G., Kochsiek, K., 1983. Diagnostic relevance of humoral and cytotoxic immune reactions in primary and secondary dilated cardiomyopathy. Am. J. Cardiol., 52(8):1072-1078.

[59]Mascaro-Blanco, A., Alvarez, K., Yu, X., Lindenfeld, J., Olansky, L., Lyons, T., Duvall, D., Heuser, J.S., Gosmanova, A., Rubenstein, C.J., et al., 2008. Consequences of unlocking the cardiac myosin molecule in human myocarditis and cardiomyopathies. Autoimmunity, 41(6):442-453.

[60]McManus, B.M., Chow, L.H., Wilson, J.E., Anderson, D.R., Gulizia, J.M., Gauntt, C.J., Klingel, K.E., Beisel, K.W., Kandolf, R., 1993. Direct myocardial injury by enterovirus: a central role in the evolution of murine myocarditis. Clin. Immunol. Immunopathol., 68(2):159-169.

[61]Metzger, T.C., Anderson, M.S., 2011. Myocarditis: a defect in central immune tolerance? J. Clin. Invest., 121(4):1251-1253.

[62]Miossec, P., 2009. IL-17 and Th17 cells in human inflammatory diseases. Microbes Infect., 11(5):625-630.

[63]Nelson, D.P., Wechsler, S.B., Miura, T., Stagg, A., Newburger, J.W., Mayer, J.E.Jr., Neufeld, E.J., 2002. Myocardial immediate early gene activation after cardiopulmonary bypass with cardiac ischemia-reperfusion. Ann. Thorac. Surg., 73(1):156-162.

[64]Nussinovitch, U., Shoenfeld, Y., 2010. Anti-troponin autoantibodies and the cardiovascular system. Heart, 96(19):1518-1524.

[65]Ono, H., Ichiki, T., Fukuyama, K., Iino, N., Masuda, S., Egashira, K., Takeshita, A., 2004. cAMP-response element-binding protein mediates tumor necrosis factor-α-induced vascular smooth muscle cell migration. Arterioscler. Thromb. Vasc. Biol., 24(9):1634-1639.

[66]Patel, K.P., Zhang, K., Kenney, M.J., Weiss, M., Mayhan, W.G., 2000. Neuronal expression of Fos protein in the hypothalamus of rats with heart failure. Brain Res., 865(1):27-34.

[67]Reifenberg, K., Lehr, H.A., Torzewski, M., Steige, G., Wiese, E., Kupper, I., Becker, C., Ott, S., Nusser, P., Yamamura, K., et al., 2007. Interferon-γ induces chronic active myocarditis and cardiomyopathy in transgenic mice. Am. J. Pathol., 171(2):463-472.

[68]Roopenian, D.C., Akilesh, S., 2007. FcRn: the neonatal Fc receptor comes of age. Nat. Rev. Immunol., 7(9):715-725.

[69]Root-Bernstein, R., Vonck, J., Podufaly, A., 2009. Antigenic complementarity between coxsackie virus and streptococcus in the induction of rheumatic heart disease and autoimmune myocarditis. Autoimmunity, 42(1):1-16.

[70]Rose, N.R., 2009. Myocarditis: infection versus autoimmunity. J. Clin. Immunol., 29(6):730-737.

[71]Sakai, H., Urasawa, K., Oyama, N., Kaneta, S., Saito, T., Kitabatake, A., Tsutsui, H., 2007. Induction of c-fos mRNA expression by pure pressure overload in cultured cardiac myocytes. Int. Heart J., 48(3):359-367.

[72]Schulze, K., Schultheiss, H.P., 1995. The role of the ADP/ATP carrier in the pathogenesis of viral heart disease. Eur. Heart J., 16(Suppl. O):64-67.

[73]Seko, Y., Takahashi, N., Azuma, M., Yagita, H., Okumura, K., Yazaki, Y., 1998. Expression of costimulatory molecule CD40 in murine heart with acute myocarditis and reduction of inflammation by treatment with anti-CD40l/B7-1 monoclonal antibodies. Circ. Res., 83(4):463-469.

[74]Shimada, K., Okabe, T.A., Mikami, Y., Hattori, M., Fujita, M., Kishimoto, C., 2010. Therapy with granulocyte colony-stimulating factor in the chronic stage, but not in the acute stage, improves experimental autoimmune myocarditis in rats via nitric oxide. J. Mol. Cell. Cardiol., 49(3):469-481.

[75]Staudt, A., Bohm, M., Knebel, F., Grosse, Y., Bischoff, C., Hummel, A., Dahm, J.B., Borges, A., Jochmann, N., Wernecke, K.D., et al., 2002. Potential role of autoantibodies belonging to the immunoglobulin G-3 subclass in cardiac dysfunction among patients with dilated cardiomyopathy. Circulation, 106(19):2448-2453.

[76]Staudt, A., Herda, L.R., Trimpert, C., Lubenow, L., Landsberger, M., Dorr, M., Hummel, A., Eckerle, L.G., Beug, D., Muller, C., et al., 2010. Fcγ-receptor IIa polymorphism and the role of immunoadsorption in cardiac dysfunction in patients with dilated cardiomyopathy. Clin. Pharmacol. Ther., 87(4):452-458.

[77]Steinman, L., 2007. A brief history of T(h)17, the first major revision in the T(h)1/T(h)2 hypothesis of T cell-mediated tissue damage. Nat. Med., 13(2):139-145.

[78]Su, Z., Sun, C., Zhou, C., Liu, Y., Zhu, H., Sandoghchian, S., Zheng, D., Peng, T., Zhang, Y., Jiao, Z., et al., 2011. HMGB1 blockade attenuates experimental autoimmune myocarditis and suppresses Th17-cell expansion. Eur. J. Immunol., 41(12):3586-3595.

[79]Takeshita, A., Shinoda, H., Nakabayashi, Y., Takano, A., Matsumoto, K., Suetsugu, M., Miyazawa, K., Tanaka, S., Endo, H., Ueyama, Y., et al., 2005. Sphingosine 1-phosphate acts as a signal molecule in ceramide signal transduction of TNF-α-induced activator protein-1 in osteoblastic cell line MC3T3-E1 cells. J. Oral. Sci., 47(1):43-51.

[80]Turatti, E., da Costa Neves, A., de Magalhaes, M.H., de Sousa, S.O., 2005. Assessment of c-Jun, c-Fos and cyclin D1 in premalignant and malignant oral lesions. J. Oral Sci., 47(2):71-76.

[81]Wang, Q.Q., Wang, Y.L., Yuan, H.T., Liu, F.Q., Jin, Y.P., Han, B., 2006. Immune tolerance to cardiac myosin induced by anti-CD4 monoclonal antibody in autoimmune myocarditis rats. J. Clin. Immunol., 26(3):213-221.

[82]Wang, Y., Liao, Z.G., Wang, S.C., 2005. Expression of c-Fos in rats organs after electrical injury. J. Forensic Med., 21(3):171-173, 176 (in Chinese).

[83]Woodruff, J.F., 1980. Viral myocarditis. A review. Am. J. Pathol., 101(2):425-484.

[84]Wu, F.Y., Chang, N.T., Chen, W.J., Juan, C.C., 1993. Vitamin K3-induced cell cycle arrest and apoptotic cell death are accompanied by altered expression of c-fos and c-myc in nasopharyngeal carcinoma cells. Oncogene, 8(8):2237-2244.

[85]Wu, W.F., Wang, S., Sun, Z.W., 2007. The advances on screening technology of phage-display antibody libraries. J. Lett. Biotechnol., 18(3):3.

[86]Yuan, J., Yu, M., Lin, Q.W., Cao, A.L., Yu, X., Dong, J.H., Wang, J.P., Zhang, J.H., Wang, M., Guo, H.P., et al., 2010a. Neutralization of IL-17 inhibits the production of anti-ANT autoantibodies in CVB3-induced acute viral myocarditis. Int. Immunopharmacol., 10(3):272-276.

[87]Yuan, J., Yu, M., Lin, Q.W., Cao, A.L., Yu, X., Dong, J.H., Wang, J.P., Zhang, J.H., Wang, M., Guo, H.P., et al., 2010b. Th17 cells contribute to viral replication in coxsackievirus B3-induced acute viral myocarditis. J. Immunol., 185(7):4004-4010.

[88]Yuan, J., Cao, A.L., Yu, M., Lin, Q.W., Yu, X., Zhang, J.H., Wang, M., Guo, H.P., Liao, Y.H., 2010c. Th17 cells facilitate the humoral immune response in patients with acute viral myocarditis. J. Clin. Immunol., 30(2):226-234.

[89]Yue, Y., Gui, J., Ai, W., Xu, W., Xiong, S., 2011. Direct gene transfer with IP-10 mutant ameliorates mouse CVB3-induced myocarditis by blunting Th1 immune responses. PLoS One, 6(3):e18186.

[90]Zhang, S., He, B., Goldstein, S., Ge, J., Wang, Z., Ruiz, G., 2010. The expression and significance of proto-oncogene c-Fos in viral myocarditis. Virol. J., 7:285.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE