Full Text:   <3376>

CLC number: TN912.34

On-line Access: 

Received: 2009-07-31

Revision Accepted: 2009-12-04

Crosschecked: 2009-12-07

Cited: 1

Clicked: 7932

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2010 Vol.11 No.3 P.151-159


Identical-video retrieval using the low-peak feature of a video’s audio information

Author(s):  Myoung-beom CHUNG, Il-ju KO

Affiliation(s):  Department of Media, Soongsil University, Seoul 156-743, Korea

Corresponding email(s):   {nzin, andy}@ssu.ac.kr

Key Words:  Video retrieval, Video DNA, Audio signal processing, Audio feature extraction

Share this article to: More |Next Article >>>

Myoung-beom CHUNG, Il-ju KO. Identical-video retrieval using the low-peak feature of a video’s audio information[J]. Journal of Zhejiang University Science C, 2010, 11(3): 151-159.

@article{title="Identical-video retrieval using the low-peak feature of a video’s audio information",
author="Myoung-beom CHUNG, Il-ju KO",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Identical-video retrieval using the low-peak feature of a video’s audio information
%A Myoung-beom CHUNG
%A Il-ju KO
%J Journal of Zhejiang University SCIENCE C
%V 11
%N 3
%P 151-159
%@ 1869-1951
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C0910472

T1 - Identical-video retrieval using the low-peak feature of a video’s audio information
A1 - Myoung-beom CHUNG
A1 - Il-ju KO
J0 - Journal of Zhejiang University Science C
VL - 11
IS - 3
SP - 151
EP - 159
%@ 1869-1951
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C0910472

The recognition and retrieval of identical videos by combing through entire video files requires a great deal of time and memory space. Therefore, most current video-matching methods analyze only a part of each video’s image frame information. All these methods, however, share the critical problem of erroneously categorizing identical videos as different if they have merely been altered in resolution or converted with a different codec. This paper deals instead with an identical-video-retrieval method using the low-peak feature of audio data. The low-peak feature remains relatively stable even with changes in bit-rate or codec. The proposed method showed a search success rate of 93.7% in a video matching experiment. This approach could provide a technique for recognizing identical content on video file share sites.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Chung, M.B., Sung, B.K., Ko, I.J., 2007. Pretreatment for the problem solution of contents-based music retrieval. J. Korea Soc. Comput. Inf., 12(6):97-104 (in Korean).

[2] Chung, M.B., Ko, I.J., Jang, D.S., 2009. Scene Change Detection Algorithm on Specific Movie. Proc. 11th Int. Conf. on Advanced Communication Technology, p.2286-2290.

[3] Eom, M.Y., Choe, Y.S., 2007. Scene Change Detection on H.264/AVC Compressed Video Using Intra Mode Distribution Histogram Based on Intra Prediction Mode. Proc. 6th Conf. on Applications of Electrical Engineering, p.140-144.

[4] Gevers, T., 2001. Color-Based Retrieval. In: Lew, M.S. (Ed.), Principles of Visual Information Retrieval. Springer-Verlag, London, p.11-49.

[5] Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R., 1997. Image Indexing Using Color Corrlograms. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.744-749.

[6] Idris, F., Panchanathan, S., 1997. Review of image and video indexing techniques. J. Vis. Commun. Image Represent., 8(2):146-166.

[7] Jafari-Khouzani, K., Soltanian-Zadeh, H., 2005. Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans. Pattern Anal. Mach. Intell., 27(6):1004-1008.

[8] Kaplan, L.M., Murenzi, R., Namuduri, K.R., 1998. Fast texture database retrieval using extended fractal features. SPIE, 3312:162-175.

[9] Kim, C.Y., O(Connor, N.E., 2008. Low complexity video compression using moving edge detection based on DCT coefficients. LNCS, 5371:96-107.

[10] Kim, J.S., Sung, B.K., Ko, I.J., 2008. Music Starting-Point Detection Method Using Min-Wave-Shape. Korea Society of Computer Information Conf., p.137-141 (in Korean).

[11] Lee, H.C., Lee, C.W., Kim, S.D., 2000. Abrupt Shot Change Detection Using an Unsupervised Clustering of Multiple Features. IEEE Int. Conf. on Accustics, Speech, and Signal Processing, p.2015-2018.

[12] Lupatini, G., Saraceno, C., Leonardi, R., 1998. Scene Break Detection: A Comparison. Proc. 8th Int. Workshop on Research Issues in Data Engineering Continuous-Media Databases and Applications, p.34-41.

[13] Manjunath, B.S., Ma, W.Y., 1996. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell., 18(8):837-842.

[14] McKinney, M., Breebaart, J., 2003. Features for Audio and Music Classification. Proc. Int. Symp. on Music Information Retrieval, p.151-158.

[15] Mehrotra, R., Gray, J.E., 1995. Similar-shape retrieval in shape data management. Computer, 28(9):57-62.

[16] Pereira, F., Koenen, R., 2001. MPEG-7: a standard for multimedia content description. Int. J. Image Graph., 1(3):527-546.

[17] Pickering, M.J., Ruger, S., 2003. Evaluation of key-frame based retrieval techniques for video. Comput. Vis. Image Understand., 92(2-3):217-235.

[18] Sebe, N., Lew, M.S., 2001. Color-based retrieval. Pattern Recogn. Lett., 22(2):223-230.

[19] Srivastava, A., Joshi, S.H., Mio, W., Liu, X., 2005. Statistical shape analysis: clustering, learning, and testing. IEEE Trans. Pattern Anal. Mach. Intell., 27(4):590-602.

[20] Stricker, M.A., Orengo, M., 1995. Similarity of color images. SPIE, 2420:381-392.

[21] Sung, B.K., Chung, M.B., Ko, I.J., 2008. A feature based music content recognition method using simplified MFCC. Int. J. Princ. Appl. Inf. Sci. Technol., 2(1):13-23.

[22] Swain, M.J., Ballard, D.H., 1991. Color indexing. Int. J. Comput. Vis., 7(1):11-32.

[23] Tzanetakis, G., Cook, P., 1999. Multifeature Audio Segmentation for Browsing and Annotation. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, p.103-106.

[24] Tzanetakis, G., Cook, P., 2002. Musical genre classification of audio signal. IEEE Trans. Speech Audio Process., 10(5):293-302.

[25] Vadivel, A., Sural, S., Majumdar, A.K., 2008. Temporal video segmentation using a colour-texture histogram. Int. J. Signal Imag. Syst. Eng., 1(1):78-87.

[26] Wold, E., Blum, T., Keislar, D., Wheaton, J., 1996. Content-based classification, search and retrieval of audio. IEEE Multim., 3(3):27-36.

[27] Yusoff, Y., Christmas, W., Kitter, J., 1998. A study on automatic shot change detection. LNCS, 1425:177-189.

[28] Zabih, R., Miller, J., Mai, K., 1995. A Feature-Based Algorithm for Detecting and Classifying Scene Breaks. Proc. 3rd ACM Int. Conf. on Multimedia, p.189-200.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE