Full Text:   <1622>

CLC number: TP13

On-line Access: 2011-06-07

Received: 2010-07-07

Revision Accepted: 2010-10-29

Crosschecked: 2011-05-05

Cited: 1

Clicked: 3581

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2011 Vol.12 No.6 P.464-469


Tracking control of the linear differential inclusion

Author(s):  Jun Huang, Zheng-zhi Han

Affiliation(s):  School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding email(s):   cauchyhot@sjtu.edu.cn, zzhan@sjtu.edu.cn

Key Words:  Linear differential inclusions, Tracking control, Convex hull Lyapunov functions, Uniformly ultimate boundedness

Jun Huang, Zheng-zhi Han. Tracking control of the linear differential inclusion[J]. Journal of Zhejiang University Science C, 2011, 12(6): 464-469.

@article{title="Tracking control of the linear differential inclusion",
author="Jun Huang, Zheng-zhi Han",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Tracking control of the linear differential inclusion
%A Jun Huang
%A Zheng-zhi Han
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 6
%P 464-469
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000240

T1 - Tracking control of the linear differential inclusion
A1 - Jun Huang
A1 - Zheng-zhi Han
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 6
SP - 464
EP - 469
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000240

The tracking control of linear differential inclusion is discussed. First, the definition of uniformly ultimate boundedness for linear differential inclusion is given. Then, a feedback law is constructed by using the convex hull Lyapunov function. The sufficient condition is given to guarantee the tracking error system uniformly ultimately bounded. Finally, a numerical example is simulated to illustrate the effectiveness of this control design.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Aubin, J., Cellina, A., 1984. Differential Inclusions: Set-Valued Maps and Viability Theory. Springer Verlag, Berlin.

[2]Botchkarev, O., Tripakis, S., 2000. Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. LNCS, 1790:73-88.

[3]Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequlities in System and Control Theory. SIAM, Philadelphia.

[4]Cai, X., Liu, L., Zhang, W., 2009. Saturated control design for linear differential inclusions subject to disturbance. Nonl. Dynam., 58(3):487-496.

[5]Chen, J.W., 2001. Asymptotic stability for tracking control of nonlinear uncertain dynamical systems described by differential inclusions. J. Math. Anal. Appl., 261(1):369-389.

[6]Gao, H., Chen, T., 2008. Network-based H output tracking control. IEEE Trans. Automat. Control, 53(3):655-667.

[7]Goebel, R., Teel, A., Hu, T., Lin, Z., 2004. Dissipativity for Dual Linear Differential Inclusions Through Conjugate Storage Functions. 43rd IEEE Conf. on Decision and Control, p.2700-2705.

[8]Hayakawa, T., Haddad, W., Hovakimyan, N., Chellaboina, V., 2005. Neural network adaptive control for nonlinear nonnegative dynamical systems. IEEE Trans. Neur. Networks, 16(2):399-413.

[9]Hu, T., 2007. Nonlinear control design for linear differential inclusions via convex hull of quadratics. Automatica, 43(4):685-692.

[10]Hu, T., Lin, Z., 2004. Properties of the composite quadratic Lyapunov functions. IEEE Trans. Automat. Control, 49(7):1162-1167.

[11]Hu, T., Teel, A., Zaccarian, L., 2006. Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Trans. Automat. Control, 51(11):1770-1786.

[12]Huang, J., Han, Z., Cai, X., Liu, L., 2010. Control of time-delayed linear differential inclusions with stochastic disturbance. J. Franklin Inst., 347(10):1895-1906.

[13]Huang, J., Han, Z., Cai, X., Liu, L., 2011. Robust stabilization of linear differential inclusions with affine uncertainty. Circ. Syst. Signal Process., in press.

[14]Lee, Y., Zak, S., 2004. Uniformly ultimately bounded fuzzy adaptive tracking controllers for uncertain systems. IEEE Trans. Fuzzy Syst., 12(6):797-811.

[15]Li, Z., Chen, G., Shi, S., Han, C., 2003. Robust adaptive tracking control for a class of uncertain chaotic systems. Phys. Lett. A, 310(1):40-43.

[16]Liu, L., Han, Z., Cai, X., Huang, J., 2010. Robust stabilization of linear differential inclusion system with time delay. Math. Comput. Simul., 80(5):951-958.

[17]Pogromsky, A., Santoboni, G., Nijmeijer, H., 2003. An ultimate bound on the trajectories of the Lorenz system and its applications. Nonlinearity, 16(5):1597-1605.

[18]Qu, Z., Dawson, D., 1995. Robust Tracking Control of Robot Manipulators. Piscataway, NJ.

[19]Slotine, J., Sastry, S., 1983. Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators. Int. J. Control, 38(2):465-492.

[20]Smirnov, G., 2002. Introduction to the Theory of Differential Inclusions. SIAM, Philadelphia.

[21]Sun, Y., 2008. Composite tracking control for a class of uncertain nonlinear control systems with uncertain deadzone nonlinearities. Chaos Sol. Fract., 35(2):383-389.

[22]Wu, H., Shi, P., 2010. Adaptive variable structure state estimation for uncertain systems with persistently bounded disturbances. Int. J. Robust Nonlinear Control, 20(17):2003-2015.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE