Full Text:   <3972>

CLC number: TP75

On-line Access: 2011-07-04

Received: 2010-08-30

Revision Accepted: 2010-11-30

Crosschecked: 2011-05-31

Cited: 6

Clicked: 7880

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2011 Vol.12 No.7 P.542-549


Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization

Author(s):  Ji-ming Li, Yun-tao Qian

Affiliation(s):  School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China, Zhejiang Police College, Hangzhou 310053, China

Corresponding email(s):   ljming@zju.edu.cn

Key Words:  Hyperspectral, Band selection, Clustering, Sparse nonnegative matrix factorization

Ji-ming Li, Yun-tao Qian. Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization[J]. Journal of Zhejiang University Science C, 2011, 12(7): 542-549.

@article{title="Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization",
author="Ji-ming Li, Yun-tao Qian",
journal="Journal of Zhejiang University Science C",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization
%A Ji-ming Li
%A Yun-tao Qian
%J Journal of Zhejiang University SCIENCE C
%V 12
%N 7
%P 542-549
%@ 1869-1951
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1000304

T1 - Clustering-based hyperspectral band selection using sparse nonnegative matrix factorization
A1 - Ji-ming Li
A1 - Yun-tao Qian
J0 - Journal of Zhejiang University Science C
VL - 12
IS - 7
SP - 542
EP - 549
%@ 1869-1951
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1000304

hyperspectral imagery generally contains a very large amount of data due to hundreds of spectral bands. band selection is often applied firstly to reduce computational cost and facilitate subsequent tasks such as land-cover classification and higher level image analysis. In this paper, we propose a new band selection algorithm using sparse nonnegative matrix factorization (sparse NMF). Though acting as a clustering method for band selection, sparse NMF need not consider the distance metric between different spectral bands, which is often the key step for most common clustering-based band selection methods. By imposing sparsity on the coefficient matrix, the bands’ clustering assignments can be easily indicated through the largest entry in each column of the matrix. Experimental results showed that sparse NMF provides considerable insight into the clustering-based band selection problem and the selected bands are good for land-cover classification.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Archibald, R., Fann, G., 2007. Feature selection and classification of hyperspectral images, with support vector machines. IEEE Geosci. Remote Sens. Lett., 4(4):674-677.

[2]Bazi, Y., Melgani, F., 2006. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens., 44(11):3374-3385.

[3]Chang, C.C., Lin, C.J., 2001. LIBSVM: a Library for Support Vector Machines. Available from http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[4]Chang, C.I., Du, Q., Sun, T.L., Althouse, M.L.G., 1999. A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens., 37(6):2631-2641.

[5]Cheng, Q., Varshney, P.K., Arora, M.K., 2006. Logistic regression for feature selection and soft classification of remote sensing data. IEEE Geosci. Remote Sens. Lett., 3(4):491-494.

[6]Ding, C., He, X., Simon, H.D., 2005. On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering. Proc. SIAM Data Mining Conf., p.606-610.

[7]Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann. Hum. Genet., 7(2):179-188.

[8]Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach. Learn. Res., 3(7-8):1157-1182.

[9]Hoyer, P.O., 2004. Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res., 5:1457-1469.

[10]Hyvärinen, A., Oja, E., 2000. Independent component analysis: algorithms and applications. Neur. Networks, 13(4-5):411-430.

[11]Jolliffe, I., 2002. Principal Component Analysis (2nd Ed.). Springer, p.516.

[12]Keshava, N., 2004. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sens., 42(7):1552-1565.

[13]Kim, H., Park, H., 2007. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics, 23(12):1495-1502.

[14]Kim, J., Park, H., 2008. Sparse Nonnegative Matrix Factorization for Clustering. CSE Technical Report, GT-CSE-08-01, Georgia Institute of Technology.

[15]Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791.

[16]Lee, D.D., Seung, H.S., 2001. Algorithms for non-negative matrix factorization. Adv. Neur. Inform. Process. Syst., 13:556-562.

[17]Martinez-Uso, A., Pla, F., Sotoca, J.M., Garcia-Sevilla, P., 2007. Clustering-based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens., 45(12):4158-4171.

[18]Munoz-Mari, J., Bruzzone, L., Camps-Valls, G., 2007. A support vector domain description approach to supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens., 45(8):2683-2692.

[19]Neher, R., Srivastava, A., 2005. A Bayesian MRF framework for labeling terrain using hyperspectral imaging. IEEE Trans. Geosci. Remote Sens., 43(6):1363-1374.

[20]Qian, Y., Yao, F., Jia, S., 2009. Band selection for hyperspectral imagery using affinity propagation. IET Comput. Vis., 3(4):213-222.

[21]Shahnaz, F., Berry, M.W., Pauca, V.P., Plemmons, R.J., 2006. Document clustering using nonnegative matrix factorization. Inform. Process. Manag., 42(2):373-386.

[22]Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58(1):267-288.

[23]Wang, S., Chang, C.I., 2007. Variable-number variable-band selection for feature characterization in hyperspectral signatures. IEEE Trans. Geosci. Remote Sens., 45(9):2979-2992.

[24]Xu, W., Liu, X., Gong, Y., 2003. Document Clustering Based on Non-negative Matrix Factorization. Proc. 26th Annual Int. ACM SIGIR Conf. on Research and Development in Informaion Retrieval, p.267-273.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE