CLC number: TP27
On-line Access: 2013-03-05
Received: 2012-06-05
Revision Accepted: 2012-12-26
Crosschecked: 2013-01-10
Cited: 0
Clicked: 6491
Sara Haghighatnia, Reihaneh Kardehi Moghaddam. Enlarging the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainty[J]. Journal of Zhejiang University Science C, 2013, 14(3): 214-221.
@article{title="Enlarging the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainty",
author="Sara Haghighatnia, Reihaneh Kardehi Moghaddam",
journal="Journal of Zhejiang University Science C",
volume="14",
number="3",
pages="214-221",
year="2013",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1200213"
}
%0 Journal Article
%T Enlarging the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainty
%A Sara Haghighatnia
%A Reihaneh Kardehi Moghaddam
%J Journal of Zhejiang University SCIENCE C
%V 14
%N 3
%P 214-221
%@ 1869-1951
%D 2013
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1200213
TY - JOUR
T1 - Enlarging the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainty
A1 - Sara Haghighatnia
A1 - Reihaneh Kardehi Moghaddam
J0 - Journal of Zhejiang University Science C
VL - 14
IS - 3
SP - 214
EP - 221
%@ 1869-1951
Y1 - 2013
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1200213
Abstract: A novel approach to enlarge the guaranteed region of attraction in nonlinear systems with bounded parametric uncertainties based on the design of a nonlinear controller is proposed. The robust domain of attraction (RDA) is estimated using the parameter-dependent quadratic Lyapunov function and enlarged by the optimal controlling parameters. The problem of extending the RDA is indicated in a form of three-layer optimization problem. Some examples illustrate the efficiency of the proposed strategy in enlarging RDA.
[1]Bakhtiari, R., Yazdanpanah, M.J., 2005. Designing a Linear Controller for Polynomial Systems with the Largest Domain of Attraction via LMIs. Int. Conf. on Control and Automation, p.449-453.
[2]Barreiro, A., Aracil, J., Pagano, D., 2002. Detection of attraction domains of non-linear systems using bifurcation analysis and Lyapunov functions. Int. J. Control, 75(5):314-327.
[3]Camilli, F., Grune, L., Wirth, F., 2001. A generalization of Zubov’s method to perturbed systems. SIAM J. Control Optim., 40(2):496-515.
[4]Camilli, F., Grune, L., Wirth, F., 2002. A Generalization of Zubove’s Method to Perturbed Systems. Proc. 41st IEEE Conf. on Decision and Control, p.3518-3523.
[5]Chesi, G., 2004a. On the Estimation of the Domain of Attraction for Uncertain Polynomial Systems via LMIs. Proc. 43rd IEEE Conf. on Decision and Control, p.881-886.
[6]Chesi, G., 2004b. Estimating the domain of attraction for uncertain polynomial systems. Automatica, 40(11):1981-1986.
[7]Chesi, G., 2005. Computing output feedback controllers to enlarge the domain of attraction in polynomial systems. IEEE Trans. Autom. Control, 49(10):1846-1850.
[8]Chesi, G., 2009. Estimating the domain of attraction for nonpolynomial systems via LMI optimizations. Automatica, 45(6):1536-1541.
[9]Chesi, G., 2011. Control Synthesis for Enlarging the Robust Domain of Attraction in Uncertain Polynomial Systems. Proc. IASTED Int. Conf. on Control and Applications, p.729-738.
[10]Cruck, E., Moitie, R., Seube, N., 2001. Estimation of basins of attraction for uncertain systems with affine and Lipschitz dynamics. Dyn. Control, 11(3):211-227.
[11]Haghighatnia, S., Moghaddam, R.K., 2012. Directional extension of the domain of attraction to increase critical clearing time of nonlinear systems. J. Am. Sci., 8(1):444-449.
[12]Hahn, W., 1967. Stability of Motion. Springer, Berlin (in German).
[13]Kaslik, E., Balint, A.M., Balint, S., 2005. Methods for determination and approximation of the domain of attraction. Nonl. Anal. Theory Methods Appl., 60(4):703-717.
[14]Khalil, H.K., 2002. Nonlinear Systems (3rd Ed.). Prentice Hall, Upper Saddle River, New Jersey.
[15]La Salle, J., Lefschetz, S., 1961. Stability by Liapunov’s Direct Method. Academic Press, New York.
[16]Li, C., Ryoo, C.S., Li, N., Cao, L., 2009. Estimating the domain of attraction via moment matrices. Bull. Kor. Math. Soc., 46(6):1237-1248.
[17]Matallana, L.G., Blanco, A.M., Bandoni, J.A., 2011. Nonlinear dynamic systems design based on the optimization of the domain of attraction. Math. Comput. Model., 53(5-6):731-745.
[18]Paice, A., Wirth, F., 1998. Robustness Analysis of Domains of Attraction of Nonlinear Systems. Proc. Mathematical Theory of Networks and Systems, p.353-356.
[19]Rapoport, L.B., 1999. Estimation of an Attraction Domain for Multivariable Lur’e Systems Using Looseless Extension of the S-Procedure. Proc. American Control Conf., p.2395-2396.
[20]Rapoport, L.B., Morozov, Y.V., 2008. Estimating the attraction domain of the invariant set in the problem of wheeled robot control. Autom. Remote Control, 69(11):1859-1872.
[21]Tan, W., 2006. Nonlinear Control Analysis and Synthesis Using Sum-of-Squares Programming. PhD Thesis, University of California, Berkeley.
[22]Topcu, U., Packard, A.K., Seiler, P., Balas, G.J., 2010. Robust region of attraction estimation. IEEE Trans. Autom. Control, 55(1):137-142.
[23]Trofino, A., 2000. Robust Stability and Domain of Attraction of Uncertain Nonlinear Systems. Proc. American Control Conf., p.3707-3710.
[24]Vidyasagar, M., 1993. Nonlinear Systems Analysis. Prentice Hall, New Jersey.
[25]Zhai, G., Matsune, I., Imae, J., Kobayashi, T., 2009. A note on multiple Lyapunov functions and stability condition for switched and hybrid systems. Int. J. Innov. Comput. Inf. Control, 5(5):1189-1199.
Open peer comments: Debate/Discuss/Question/Opinion
<1>