Full Text:   <3177>

Summary:  <2101>

CLC number: TN925

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-05-04

Cited: 2

Clicked: 8227

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.6 P.470-481

http://doi.org/10.1631/jzus.C1300269


Reliable beacon transmission based MAC protocol for LR-WPANs over WLAN interferences


Author(s):  Ji-Hoon Park, Byung-Seo Kim

Affiliation(s):  ITO Business Division, Nongshim Data System, Seoul 156-709, Korea; more

Corresponding email(s):   pjh@nongshim.co.kr, jsnbs@hongik.ac.kr

Key Words:  Low rate wireless personal area network (LR-WPAN), Interference, Wireless local area network (WLAN), Beacon


Ji-Hoon Park, Byung-Seo Kim. Reliable beacon transmission based MAC protocol for LR-WPANs over WLAN interferences[J]. Journal of Zhejiang University Science C, 2014, 15(6): 470-481.

@article{title="Reliable beacon transmission based MAC protocol for LR-WPANs over WLAN interferences",
author="Ji-Hoon Park, Byung-Seo Kim",
journal="Journal of Zhejiang University Science C",
volume="15",
number="6",
pages="470-481",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300269"
}

%0 Journal Article
%T Reliable beacon transmission based MAC protocol for LR-WPANs over WLAN interferences
%A Ji-Hoon Park
%A Byung-Seo Kim
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 6
%P 470-481
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300269

TY - JOUR
T1 - Reliable beacon transmission based MAC protocol for LR-WPANs over WLAN interferences
A1 - Ji-Hoon Park
A1 - Byung-Seo Kim
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 6
SP - 470
EP - 481
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300269


Abstract: 
The use of IEEE 802.15.4 standard based application systems has been rapidly increasing, for example, in medical services, sensor networks, public safety systems, and home automation systems. However, issues arise from the fact that IEEE 802.15.4 standard based low rate wireless personal area networks (LR-WPANs) use the same frequency bands as wireless local area networks (WLANs), and they interfere with each other. Based on past research on this issue, the interference has a more serious impact on LR-WPANs’ performance than on WLANs’ performance. In this paper we propose a method to improve LR-WPANs’ performance while coexisting with WLANs, which is called the reliable beacon transmission based medium access control (MAC) protocol. Since the reliability of a beacon frame is important, in this method, only the beacon frame is transmitted in interference-free channels, and the data packets are transmitted in interfered channels instead of abandoning the channels altogether. This method increases the reliability of beacon frames as well as overall channel utilizations. The effectiveness of the proposed method was evaluated through extensive simulations, and this paper proves that this method improves the performance of IEEE 802.15.4 based wireless sensor networks (WSNs) over WLANs’ interferences.

无线局域网干扰下低速无线个人区域网络中基于可靠信标传输的介质访问控制协议

研究目的:近年来,基于IEEE 802.15.4标准的应用增加迅猛,如医疗服务、传感器网络、公共安全系统和家庭自动化系统。然而,基于IEEE 802.15.4标准的低速无线个人区域网络与无线局域网使用相同频带,两者相互干扰。已有研究显示,这种干扰对低速无线个人区域网络性能的影响较之无线局域网更为严重。本文提出一种基于可靠信标传输的介质访问控制协议,以改进低速无线个人区域网络在与无线局域网共存时的性能。
方法提亮:鉴于该协议中信标帧的可靠性十分重要,在抗干扰通道中只传输信标帧,在受干扰通道内传输数据包而非完全放弃通道。该方法在提升通道利用率的同时提高了信标帧的可靠性。
重要结论:大量仿真结果显示了该方法的有效性。该方法提升了基于IEEE 802.15.4标准的低速无线个人区域网络在受到无线局域网干扰情况下的性能。

关键词:低速无线个人区域网络;干扰;无线局域网;信标

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Deylami, M., Jovanov, E., 2012. A distributed and collaborative scheme for mitigating coexistence in IEEE 802.15.4 based WBANs. 50th Annual Southeast Regional Conf., p.1-6.

[2]Howitt, I., Gutierrez, J.A., 2003. IEEE 802.15.4 low rate-wireless personal area network coexistence issues. Wireless Communications and Networking Conf., p.1481-1486.

[3]IEEE, 2006. IEEE Std. 802.15.4:2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low Rate.

[4]IEEE, 2007. IEEE Std. 802.11:2007, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[5]Kim, B.S., Kim, S.W., Fang, Y., et al., 2010. Feedback-assisted MAC protocol for real time traffics in high rate wireless personal area networks. Wirel. Networks, 16(4):1109-1121.

[6]Kim, J.W., Kim, J., Eom, D.S., 2008. Multi-dimensional channel management scheme to avoid beacon collision in LR-WPAN. IEEE Trans. Consum. Electron., 54(2):396-404.

[7]Kim, T.H., Ha, J.Y., Choi, S., 2009. Improving spectral and temporal efficiency of collocated IEEE 802.15.4 LR-WPANs. IEEE Trans. Mob. Comput., 8(12):1596-1609.

[8]Lau, S.Y., Lin, T.H., Huang, T.Y., et al., 2009. A measurement study of ZigBee-based indoor localization systems under RF interference. 4th ACM Int. Workshop on Experimental Evaluation and Characterization, p.35-42.

[9]Park, J.H., Kim, B.S., 2014. Performance improvements on LR-WPANs over interference from WLANs. IEICE Trans. Inform. Syst., E97-D(1):151-154.

[10]Petrova, M., Gutierrez, J.A., 2006. Performance study of IEEE 802.15.4 using measurements and simulations. Wireless Communications and Networking Conf., p.487-492.

[11]Pollin, S., Ergen, M., Timmers, M., et al., 2006. Distributed cognitive coexistence of 802.15.4 with 802.11. 1st Int. Conf. on Cognitive Radio Oriented Wireless Networks and Communications, p.1-5.

[12]Rappaport, T.S., 1996. Mobile radio propagation: large-scale path loss. In: Wireless Communications: Principles and Practices. Upper Prentice Hall, NJ, USA, p.69-185.

[13]Shin, S.Y., Choi, S., Park, H.S., et al., 2005. Packet error rate analysis of IEEE 802.15.4 under IEEE 802.11b interference. LNCS, 3510:279-288.

[14]Shin, S.Y., Park, H.S., Kwon, W.H., 2007. Mutual interference analysis of IEEE 802.15.4 and IEEE 802.11b. Comput. Networks, 51(12):3338-3353.

[15]Sikora, A., Groza, V.F., 2005. Coexistence of IEEE802.15.4 with other systems in the 2.4 GHz-ISM-band. Instrumentation and Measurement Technology Conf., p.1786-1791.

[16]Soro, S., Heinzelman, W., 2009. A survey of visual sensor networks. Adv. Multim., Article ID 640386.

[17]Stanciulescu, G., Farhangi, H., Palizban, A., et al., 2012. Communication technologies for BCIT smart microgrid. IEEE PES Innovative Smart Grid Technologies, p.1-7.

[18]Yoon, D.G., Shin, S.Y., Kwon, W.H., et al., 2006. Packet error rate analysis of IEEE 802.11b under IEEE 802.15.4 interference. 63rd Vehicular Technology Conf., p.1186-1190.

[19]Yuan, W., Wang, X., Linnartz, J.P.M.G., 2007. A coexistence model of IEEE 802.15.4 and IEEE 802.11b/g. 14th IEEE Symp. on Communications and Vehicular Technology, p.1-5.

[20]Yun, J., Lee, B., Li, J., 2008. A channel switching scheme for avoiding interference of between IEEE 802.15.4 and other networks. Int. Multisymp. on Computer and Computational Sciences, p.136-139.

[21]Zhang, X., Shin, K.G., 2011. Enabling coexistence of heterogeneous wireless systems: case for ZigBee and WiFi. 12th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing, p.6-11.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE