Full Text:   <1713>

Summary:  <513>

CLC number: TP13

On-line Access: 2014-04-10

Received: 2013-10-14

Revision Accepted: 2014-01-07

Crosschecked: 2014-03-17

Cited: 0

Clicked: 3290

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.4 P.284-292

http://doi.org/10.1631/jzus.C1300287


Coordinated standoff tracking of moving targets using differential geometry


Author(s):  Zhi-qiang Song, Hua-xiong Li, Chun-lin Chen, Xian-zhong Zhou, Feng Xu

Affiliation(s):  Department of Control and System Engineering, School of Management and Engineering, Nanjing University, Nanjing 210093, China; more

Corresponding email(s):   huaxiongli@nju.edu.cn

Key Words:  Unmanned aircraft, Standoff tracking, Differential geometry, Coordinated control


Zhi-qiang Song, Hua-xiong Li, Chun-lin Chen, Xian-zhong Zhou, Feng Xu. Coordinated standoff tracking of moving targets using differential geometry[J]. Journal of Zhejiang University Science C, 2014, 15(4): 284-292.

@article{title="Coordinated standoff tracking of moving targets using differential geometry",
author="Zhi-qiang Song, Hua-xiong Li, Chun-lin Chen, Xian-zhong Zhou, Feng Xu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="4",
pages="284-292",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300287"
}

%0 Journal Article
%T Coordinated standoff tracking of moving targets using differential geometry
%A Zhi-qiang Song
%A Hua-xiong Li
%A Chun-lin Chen
%A Xian-zhong Zhou
%A Feng Xu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 4
%P 284-292
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300287

TY - JOUR
T1 - Coordinated standoff tracking of moving targets using differential geometry
A1 - Zhi-qiang Song
A1 - Hua-xiong Li
A1 - Chun-lin Chen
A1 - Xian-zhong Zhou
A1 - Feng Xu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 4
SP - 284
EP - 292
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300287


Abstract: 
This research is concerned with coordinated standoff tracking, and a guidance law against a moving target is proposed by using differential geometry. We first present the geometry between the unmanned aircraft (UA) and the target to obtain the convergent solution of standoff tracking when the speed ratio of the UA to the target is larger than one. Then, the convergent solution is used to guide the UA onto the standoff tracking geometry. We propose an improved guidance law by adding a derivative term to the relevant algorithm. To keep the phase angle difference of multiple UAs, we add a second derivative term to the relevant control law. Simulations are done to demonstrate the feasibility and performance of the proposed approach. The proposed algorithm can achieve coordinated control of multiple UAs with its simplicity and stability in terms of the standoff distance and phase angle difference.

基于微分几何的运动目标协同对峙跟踪

研究目的:在现代军事和民用领域,无人机可代替人类执行有风险的任务,如目标跟踪、监视、侦察、营救、区域覆盖、火力打击等。基于多个无人机的目标协同跟踪技术,在更有效地跟踪敌方入侵目标、决策和打击敌方入侵目标等方面具有重要意义。协同对峙跟踪是协同跟踪的一种模式。本文以微分几何为基础,提出一种新的协同对峙跟踪控制律。
创新要点:基于微分几何的协同对峙跟踪技术,使得多个无人机与目标保持对峙距离,且各无人机间保持一定相位。无人机在对峙圆内部时,采用如下简单、有效方法:若无人机航向与目标一致,偏离目标一定角度前行;否则,保持原有速度和航向行进。从理论上论证了运动目标对峙跟踪稳定性。
方法提亮:基于微分几何的控制律具备以下优点:算法实现简单且只需较少通信量;可以分析运动目标对峙跟踪的稳定性;在控制律中增加一个微分项,可在系统中引入一个有效的早期修正信号,从而加快系统动作速度,减少调节时间。
重要结论:在无人机与目标的速度比大于1的前提下,仿真实验表明了算法有效性。所提算法同样适用于在一定环境下多无人艇、多无人车对目标的协同对峙跟踪。

关键词:无人机;对峙跟踪;微分几何;协同控制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Acevedo, J.J., Arrue, B.C., Maza, I., et al., 2013. Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. J. Intell. Robot. Syst., 70(1-4):329-345.

[2]Chen, H., Chang, K., Agate, C.S., 2013. UAV path planning with tangent-plus-Lyapunov vector field guidance and obstacle avoidance. IEEE Trans. Aerosp. Electron. Syst., 49(2):840-856.

[3]Forsmo, E.J., Grotli, E.I., Fossen, T.I., et al., 2013. Optimal search mission with unmanned aerial vehicles using mixed integer linear programming. Int. Conf. on Unmanned Aircraft Systems, p.253-259.

[4]Frew, E.W., Lawrence, D.A., Morris, S., 2008. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. J. Guid. Contr. Dynam., 31(2): 290-306.

[5]Griffiths, S.R., 2006. Remote Terrain Navigation for Unmanned Air Vehicles. MS Thesis, Brigham Young University, Utah, USA.

[6]Kim, S., Oh, H., Tsourdos, A., 2013. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle. J. Guid. Contr. Dynam., 36(2):557-566.

[7]Lawrence, D.A., 2003. Lyapunov vector fields for UAV flock coordination. 2nd AIAA Unmanned Unlimited Conf., Workshop, and Exhibit, p.1-8.

[8]Lawrence, D.A., Frew, E.W., Pisano, W.J., 2008. Lyapunov vector fields for autonomous unmanned aircraft flight control. J. Guid. Contr. Dynam., 31(5):1220-1229.

[9]Li, Y., Ang, K.H., Chong, G.C.Y., 2006. PID control system analysis and design. IEEE Contr. Syst., 26(1):32-41.

[10]Lim, S., Kim, Y., Lee, D., et al., 2013. Standoff target tracking using a vector field for multiple unmanned aircrafts. J. Intell. Robot. Syst., 69(1-4):347-360.

[11]Nelson, D.R., Barber, D.B., McLain, T.W., et al., 2007. Vector field path following for miniature air vehicles. IEEE Trans. Robot., 23(3):519-529.

[12]Nigam, N., Bieniawski, S., Kroo, I., et al., 2012. Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Trans. Contr. Syst. Technol., 20(5):1236-1251.

[13]Oh, H., Kim, S., Shin, H.S., et al., 2013. Rendezvous and standoff target tracking guidance using differential geometry. J. Intell. Robot. Syst., 69(1-4):389-405.

[14]Ping, J.T.K., Ling, A.E., Quan, T.J., et al., 2012. Generic unmanned aerial vehicle (UAV) for civilian application. IEEE Conf. on Sustainable Utilization and Development in Engineering and Technology, p.289-294.

[15]Prevost, C.G., Theriault, O., Desbiens, A., et al., 2009. Receding horizon model-based predictive control for dynamic target tracking: a comparative study. AIAA Guidance, Navigation, and Control Conf., p.1-9.

[16]Summers, T.H., Akella, M.R., Mears, M.J., 2009. Coordinated standoff tracking of moving targets: control laws and information architectures. J. Guid. Contr. Dynam., 32(1): 56-69.

[17]White, B.A., Zbikowski, R., Tsourdos, A., 2007. Direct intercept guidance using differential geometry concepts. IEEE Trans. Aerosp. Electron. Syst., 43(3):899-919.

[18]Wise, R.A., Rysdyk, R.T., 2006. UAV coordination for autonomous target tracking. Proc. AIAA Guidance, Navigation, and Control Conf., p.3210-3231.

[19]Zarea, M., Pognonec, G., Schmidt, C., et al., 2013. First steps in developing an automated aerial surveillance approach. J. Risk Res., 13(3-4):407-420.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE