Full Text:   <1485>

Summary:  <471>

CLC number: TP391

On-line Access: 2014-07-10

Received: 2013-12-01

Revision Accepted: 2014-02-18

Crosschecked: 2014-06-16

Cited: 0

Clicked: 2919

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.7 P.514-524

10.1631/jzus.C1300342


Procedural generation and real-time rendering of a marine ecosystem


Author(s):  Rong Li, Xin Ding, Jun-hao Yu, Tian-yi Gao, Wen-ting Zheng, Rui Wang, Hu-jun Bao

Affiliation(s):  State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   wtzheng@cad.zju.edu.cn

Key Words:  Procedural generation, Marine ecosystem, Biological feature, Graphic processing unit acceleration


Rong Li, Xin Ding, Jun-hao Yu, Tian-yi Gao, Wen-ting Zheng, Rui Wang, Hu-jun Bao. Procedural generation and real-time rendering of a marine ecosystem[J]. Journal of Zhejiang University Science C, 2014, 15(7): 514-524.

@article{title="Procedural generation and real-time rendering of a marine ecosystem",
author="Rong Li, Xin Ding, Jun-hao Yu, Tian-yi Gao, Wen-ting Zheng, Rui Wang, Hu-jun Bao",
journal="Journal of Zhejiang University Science C",
volume="15",
number="7",
pages="514-524",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1300342"
}

%0 Journal Article
%T Procedural generation and real-time rendering of a marine ecosystem
%A Rong Li
%A Xin Ding
%A Jun-hao Yu
%A Tian-yi Gao
%A Wen-ting Zheng
%A Rui Wang
%A Hu-jun Bao
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 7
%P 514-524
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1300342

TY - JOUR
T1 - Procedural generation and real-time rendering of a marine ecosystem
A1 - Rong Li
A1 - Xin Ding
A1 - Jun-hao Yu
A1 - Tian-yi Gao
A1 - Wen-ting Zheng
A1 - Rui Wang
A1 - Hu-jun Bao
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 7
SP - 514
EP - 524
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1300342


Abstract: 
Underwater scene is one of the most marvelous environments in the world. In this study, we present an efficient procedural modeling and rendering system to generate marine ecosystems for swim-through graphic applications. To produce realistic and natural underwater scenes, several techniques and algorithms have been presented and introduced. First, to distribute sealife naturally on a seabed, we employ an ecosystem simulation that considers the influence of the underwater environment. Second, we propose a two-level procedural modeling system to generate sealife with unique biological features. At the base level, a series of grammars are designed to roughly represent underwater sealife on a central processing unit (CPU). Then at the fine level, additional details of the sealife are created and rendered using graphic processing units (GPUs). Such a hybrid CPU-GPU framework best adopts sequential and parallel computation in modeling a marine ecosystem, and achieves a high level of performance. Third, the proposed system integrates dynamic simulations in the proposed procedural modeling process to support dynamic interactions between sealife and the underwater environment, where interactions and physical factors of the environment are formulated into parameters and control the geometric generation at the fine level. Results demonstrate that this system is capable of generating and rendering scenes with massive corals and sealife in real time.

复杂海洋生态系统的过程式生成与实时绘制

研究目的:面向具有生物多样性的大范围复杂海洋生态环境,实现对其复杂几何的高效建模生成,同时实现实时绘制。
创新要点:我们使用了一种CPU和GPU混合的过程式生成流水线,从而充分发挥了CPU的灵活性和GPU的高计算性能,取得了整体上的高效率。
研究方法:首先,考虑了海底地形、波能、光能、生物属性等影响因素,提出了一种以竞争机制为原则的生态环境模拟过程,输出区域海底环境的生物空间分布(图4)。然后,针对海洋生物个体,提出了一个两阶段的过程式生成流水线(图2)。第一阶段,在CPU上通过解码一系列语法,生成粗糙的几何外形和高度紧凑的细节信息;第二阶段,基于现代GPU的强大硬件细分能力,实时解码细节信息,完成多细节层次的生物细节几何生成。最后,针对海洋生物之间的互动,系统定制了动态模拟模块。通过对复杂物理模型的简化,在CPU上实现对海洋生物整体形状形变的实时计算。在GPU上利用该形变计算结果,生成生物的形变细节(图11)。
重要结论:针对大范围海下生态环境,提出了一种高效的过程式建模和绘制系统,达到了复杂几何的高效生成及实时三维场景漫游效果。
过程式生成;海洋生态环境;生物特性;GPU加速

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bryan, T.L., Metaxas, A., 2006. Distribution of deep-water corals along the North American continental margins: relationships with environmental factors. Deep Sea Res. I, 53(12):1865-1879.

[2]Carucci, F., Studios, L., 2005. Inside geometry instancing. In: Fernando, R., Pharr, M. (Eds.), GPU Gems 2. Addison-Wesley, Massachusetts.

[3]Castro, P., Huber, M., 2012. Marine Biology. McGraw-Hill Companies, New York.

[4]Deussen, O., Hanrahan, P., Lintermann, B., et al., 1998. Realistic modeling and rendering of plant ecosystems. Proc. 25th Annual Conf. on Computer Graphics and Interactive Techniques, p.275-286.

[5]Diener, J., Rodriguez, M., Baboud, L., et al., 2009. Wind projection basis for real-time animation of trees. Comput. Graph. Forum, 28(2):533-540.

[6]Jensen, H.W., 2001. Realistic Image Synthesis Using Photon Mapping. A.K. Peters, Ltd., Natick.

[7]Jeschke, S., Wimmer, M., Purgathofer, W., 2005. Image-based representations for accelerated rendering of complex scenes. EUROGRAPHICS, p.1-20.

[8]Jonsson, I.G., 1966. Wave boundary layers and friction factors. Proc. 10th Int. Conf. on Coastal Engineering, p.127-148.

[9]Lanza, S., 2007. Animation and rendering of underwater godrays. In: Engel, W.G. (Eds.), ShaderX5: Advanced Rendering Techniques. Cengage Learning, p.315-327.

[10]Lawrence, J.M., 1987. A Functional Biology of Echinoderms. The Johns Hopkins University Press, Baltimore.

[11]Lindenmayer, A., 1968. Mathematical models for cellular interactions in development: I. Filaments with one-sided inputs. J. Theor. Biol., 18(3):280-299.

[12]Lluch, J., Camahort, E., Vivo, R., 2003. Procedural multiresolution for plant and tree rendering. Proc. 2nd Int. Conf. on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, p.31-38.

[13]Mann, K., Lazier, J., 2005. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Wiley-Blackwell.

[14]Marvie, J.E., Buron, C., Gautron, P., et al., 2012. GPU shape grammars. Comput. Graph. Forum, 31(7):2087-2095.

[15]McDonald, J., 2011. Tessellation on any budget. Game Developers Conf.

[16]Nielsen, P., 1992. Coastal Bottom Boundary Layers and Sediment Transport. World Scientific, Singapore.

[17]Papadopoulos, C., Papaioannou, G., 2009. Realistic real-time underwater caustics and godrays. Proc. 19th Int. Conf. on Computer Graphics and Vision, p.89-95.

[18]Parish, Y.I.H., Muller, P., 2001. Procedural modeling of cities. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.301-308.

[19]Prusinkiewicz, P., Lindenmayer, A., 1990. The Algorithmic Beauty of Plants. Springer-Verlag, New York.

[20]Rsastergrid, 2010. Instance Cloud Reduction reloaded. Available from http://rastergrid.com/blog/2010/06/instance-cloud-reduction-reloaded/.

[21]Sakude, M.T.S., Yano, E.T., Salles, P.S.C.R., 2011. Real time image generation for underwater simulation. Proc. Interservice/Industry Training, Simulation and Education Conf.

[22]Storlazzi, C.D., Field, M.E., Dykes, J.D., et al., 2002. Wave control on reef morphology and coral distribution: Molokai, Hawaii. Ocean Wave Meas. Anal., 1:784-793.

[23]Weber, J., Penn, J., 1995. Creation and rendering of realistic trees. Proc. 22nd Annual Conf. on Computer Graphics and Interactive Techniques, p.119-128.

[24]Wloka, M., 2003. “Batch, batch, batch”: what does it really mean? Presentation at Game Developers Conf.

[25]Wonka, P., Aliaga, D., Muller, P., et al., 2011. Modeling 3D urban spaces using procedural and simulation-based techniques. Proc. 38th Annual Conf. on Computer Graphics and Interactive Techniques, Article No. 9.

[26]Zioma, R., 2007. GPU-generated procedural wind animations for trees. GPU Gems, 3:231-240.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - Journal of Zhejiang University-SCIENCE