Full Text:   <2981>

Summary:  <2041>

CLC number: TM732

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-10-16

Cited: 3

Clicked: 7579

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.11 P.1035-1047

http://doi.org/10.1631/jzus.C1400030


Generation maintenance scheduling based on multiple objectives and their relationship analysis


Author(s):  Jun-peng Zhan, Chuang-xin Guo, Qing-hua Wu, Lu-liang Zhang, Hong-jun Fu

Affiliation(s):  College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   zhanjunpeng@zju.edu.cn, guochuangxin@zju.edu.cn, qhwu@liv.ac.uk, ll.zhang02@mail.scut.edu.cn

Key Words:  Generation maintenance scheduling, Market environment, Multi-objective optimization


Jun-peng Zhan, Chuang-xin Guo, Qing-hua Wu, Lu-liang Zhang, Hong-jun Fu. Generation maintenance scheduling based on multiple objectives and their relationship analysis[J]. Journal of Zhejiang University Science C, 2014, 15(11): 1035-1047.

@article{title="Generation maintenance scheduling based on multiple objectives and their relationship analysis",
author="Jun-peng Zhan, Chuang-xin Guo, Qing-hua Wu, Lu-liang Zhang, Hong-jun Fu",
journal="Journal of Zhejiang University Science C",
volume="15",
number="11",
pages="1035-1047",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400030"
}

%0 Journal Article
%T Generation maintenance scheduling based on multiple objectives and their relationship analysis
%A Jun-peng Zhan
%A Chuang-xin Guo
%A Qing-hua Wu
%A Lu-liang Zhang
%A Hong-jun Fu
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 11
%P 1035-1047
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400030

TY - JOUR
T1 - Generation maintenance scheduling based on multiple objectives and their relationship analysis
A1 - Jun-peng Zhan
A1 - Chuang-xin Guo
A1 - Qing-hua Wu
A1 - Lu-liang Zhang
A1 - Hong-jun Fu
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 11
SP - 1035
EP - 1047
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400030


Abstract: 
In a market environment of power systems, each producer pursues its maximal profit while the independent system operator is in charge of the system reliability and the minimization of the total generation cost when generating the generation maintenance scheduling (GMS). Thus, the GMS is inherently a multi-objective optimization problem as its objectives usually conflict with each other. This paper proposes a multi-objective GMS model in a market environment which includes three types of objectives, i.e., each producer’s profit, the system reliability, and the total generation cost. The GMS model has been solved by the group search optimizer with multiple producers (GSOMP) on two test systems. The simulation results show that the model is well solved by the GSOMP with a set of evenly distributed Pareto-optimal solutions obtained. The simulation results also illustrate that one producer’s profit conflicts with another one’s, that the total generation cost does not conflict with the profit of the producer possessing the cheapest units while the total generation cost conflicts with the other producers’ profits, and that the reliability objective conflicts with the other objectives.

基于多目标及其关系分析的发电检修计划

两个发电商的利益最大化之间存在冲突。其一,每个发电商倾向于将其拥有的机组在电价最低的时候进行检修,但每周可以检修的最大容量有限;其二,每个发电商倾向于发更多电,但每天的负荷固定不变。此外,系统可靠性目标与其他目标也构成冲突关系。为此,在电力市场环境下的发电检修计划中,考虑不同发电商的利益最大化,同时考虑电力系统的可靠性最大化。对多个目标同时进行优化,并分析不同目标之间的关系。 提出一种更适于进化算法求解的发电检修计划模型,提高了求解效率。分析了电力市场环境下发电检修计划中不同目标之间的关系及其成因。 为使发电检修计划模型更适于被进化算法求解,发电机组的检修变量采用整数编码,在线状态变量和启动状态变量均转化成为由机组出力变量表示的中间变量。对此多目标优化模型,采用带有多发现者的群搜索优化算法(GSOMP)求解。 仿真分析表明拥有最便宜机组的发电商的利益最大化目标与系统总发电费用目标并不构成冲突。本文提出的系统可靠性目标函数,在高、低负荷时段均有利于保持一定的备用容量。
发电检修计划;市场环境;多目标优化

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barot, H., Bhattacharya, K., 2008. Security coordinated maintenance scheduling in deregulation based on genco contribution to unserved energy. IEEE Trans. Power Syst., 23(4):1871-1882.

[2]Burke, E.K., Smith, A.J., 2000. Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE Trans. Power Syst., 15(1):122-128.

[3]Chattopadhyay, D., Bhattacharya, K., Parikh, J., 1995. A systems approach to least-cost maintenance scheduling for an interconnected power system. IEEE Trans. Power Syst., 10(4):2002-2007.

[4]Chen, L., Toyoda, J., 1991. Optimal generating unit maintenance scheduling for multi-area system with network constraints. IEEE Trans. Power Syst., 6(3):1168-1174.

[5]Chen, X.D., Zhan, J.P., Wu, Q.H., et al., 2014. Multi-objective optimization of generation maintenance scheduling. IEEE Power & Energy Society General Meeting, p.1-5, accepted.

[6]Christiaanse, W.R., Palmer, A.H., 1972. A technique for the automated scheduling of the maintenance of generating facilities. IEEE Trans. Power App. Syst., PAS-91(1):137-144.

[7]Conejo, A.J., Garcia-Bertrand, R., Diaz-Salazar, M., 2005. Generation maintenance scheduling in restructured power systems. IEEE Trans. Power Syst., 20(2):984-992.

[8]Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons, USA.

[9]Dopazo, J.F., Merrill, H.M., 1975. Optimal generator maintenance scheduling using integer programming. IEEE Trans. Power App. Syst., 94(5):1537-1545.

[10]El-Sharkh, M.Y., 2014. Clonal selection algorithm for power generators maintenance scheduling. Int. J. Electr. Power Energy Syst., 57:73-78.

[11]Feng, C., Wang, X., 2010. A competitive mechanism of unit maintenance scheduling in a deregulated environment. IEEE Trans. Power Syst., 25(1):351-359.

[12]Feng, C., Wang, X., Li, F., 2009. Optimal maintenance scheduling of power producers considering unexpected unit failure. IET Gener. Transm. Distrib., 3(5):460-471.

[13]Guo, C.X., Zhan, J.P., Wu, Q.H., 2012. Dynamic economic emission dispatch based on group search optimizer with multiple producers. Elect. Power Syst. Res., 86:8-16.

[14]He, S., Wu, Q.H., Saunders, J.R., 2009. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput., 13(5):973-990.

[15]Heo, J.H., Kim, M.K., Park, G.P., et al., 2011. A reliability-centered approach to an optimal maintenance strategy in transmission systems using a genetic algorithm. IEEE Trans. Power Delivery, 26(4):2171-2179.

[16]Hwang, C.L., Yoon, K., 1981. Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, New York, USA.

[17]Kralj, B.L., Petrovic, R., 1988. Optimal preventive maintenance scheduling of thermal generating units in power systems—a survey of problem formulations and solution methods. Eur. J. Oper. Res., 35(1):1-15.

[18]Lu, G., Chung, C.Y., Wong, K.P., et al., 2008. Unit maintenance scheduling coordination mechanism in electricity market environment. IET Gener. Transm. Distrib., 2(5):646-654.

[19]Marwali, M.K.C., Shahidehpour, S.M., 1998. Integrated generation and transmission maintenance scheduling with network constraints. IEEE Trans. Power Syst., 13(3):1063-1068.

[20]Marwali, M.K.C., Shahidehpour, S.M., 1999. Long-term transmission and generation maintenance scheduling with network, fuel and emission constraints. IEEE Trans. Power Syst., 14(3):1160-1165.

[21]Marwali, M.K.C., Shahidehpour, S.M., 2000. Coordination between long-term and short-term generation scheduling with network constraints. IEEE Trans. Power Syst., 15(3):1161-1167.

[22]Mendoza, J.E., Lopez, M.E., Coello, C.A.C., et al., 2009. Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Gener. Transm. Distrib., 3(9):825-840.

[23]Niknam, T., Doagou-Mojarrad, H., 2012. Multiobjective economic/emission dispatch by multiobjective thetas-particle swarm optimisation. IET Gener. Transm. Distrib., 6(5):363-377.

[24]Pandzic, H., Conejo, A.J., Kuzle, I., et al., 2012. Yearly maintenance scheduling of transmission lines within a market environment. IEEE Trans. Power Syst., 27(1):407-415.

[25]Pandzic, H. Conejo, A.J., Kuzle, I., 2013. An EPEC approach to the yearly maintenance scheduling of generating units. IEEE Trans. Power Syst., 28(2):922-930.

[26]Saraiva, J.T., Pereira, M.L., Mendes, V.T., et al., 2011. A simulated annealing based approach to solve the generator maintenance scheduling problem. Elect. Power Syst. Res., 81(7):1283-1291.

[27]Schlünz, E.B., van Vuuren, J.H., 2013. An investigation into the effectiveness of simulated annealing as a solution approach for the generator maintenance scheduling problem. Int. J. Electr. Power Energy Syst., 53:166-174.

[28]Shahidehpour, M., Marwali, M., 2000. Maintenance Scheduling in Restructured Power Systems. Kluwer Academic Pub, Norwell.

[29]Subcommittee, P.M., 1979. IEEE reliability test system. IEEE Trans. Power App. Syst., PAS-98(6):2047-2054.

[30]Tripathi, P.K., Bandyopadhyay, S., Pal, S.K., 2007. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inform. Sci., 177(22):5033-5049.

[31]Wang, Y., Pham, H., 2011. A multi-objective optimization of imperfect preventive maintenance policy for dependent competing risk systems with hidden failure. IEEE Trans. Rel., 60(4):770-781.

[32]Wu, L., Shahidehpour, M., Li, T., 2008. GENCO’s risk-based maintenance outage scheduling. IEEE Trans. Power Syst., 23(1):127-136.

[33]Wu, Q.H., Lu, Z., Li, M.S., et al., 2008. Optimal placement of FACTS devices by a group search optimizer with multiple producer. IEEE Congress on Evolutionary Computation, p.1033-1039.

[34]Yang, F., Chang, C.S., 2009a. Multiobjective evolutionary optimization of maintenance schedules and extents for composite power systems. IEEE Trans. Power Syst., 24(4):1694-1702.

[35]Yang, F., Chang, C.S., 2009b. Optimisation of maintenance schedules and extents for composite power systems using multi-objective evolutionary algorithm. IET Gener. Transm. Distrib., 3(10):930-940.

[36]Yang, F., Kwan, C.M., Chang, C.S., 2008. Multiobjective evolutionary optimization of substation maintenance using decision-varying Markov model. IEEE Trans. Power Syst., 23(3):1328-1335.

[37]Yare, Y., Venayagamoorthy, G.K., Aliyu, U.O., 2008. Optimal generator maintenance scheduling using a modified discrete PSO. IET Gener. Transm. Distrib., 2(6):834-846.

[38]Yellen, J., Al-Khamis, T.M., Vemuri, S., et al., 1992. A decomposition approach to unit maintenance scheduling. IEEE Trans. Power Syst., 7(2):726-733.

[39]Zhan, J.P., Yin, Y.J., Guo, C.X., et al., 2011. Integrated maintenance scheduling of generators and transmission lines based on fast group searching optimizer. IEEE Power and Energy Society General Meeting, p.1-6.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE