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1 Detailed derivations for Section 4

1.1 Proof of Eq. (7)

We obtain the probability of the action π(at|Ot) by using softmax to process the Q value produced by
HGRN:
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)
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, (S1)

where α is a temperature parameter to control the level of exploration of the model, which is proportional
to the diversity of the policy’s output actions. The larger the α, the more balanced the action probability
distribution of the policy. To learn such an energy-based policy, the value function V is redefined as

V (Ot) = α ln
∑
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exp

(
Q(Ot, at)

α

)
. (S2)

1.2 Derivations and pseudo code of SAC-HGRN

Adapted from SAC (Haarnoja et al., 2018), we designed an actor-critic styled variant named SAC-
HGRN. For SAC-HGRN, we define the value function V as

V (Ot) = Eat∼π(at|Ot)[Q(Ot, at)− α lnπ(at|Ot)], (S3)

and the actor network is updated by policy gradient (PG) with a maximum-entropy regularization term:

∇π =
1

S

∑
S

∇ lnπ(at|Ot) ·
(
Q(Ot, at)− α lnπ(at|Ot)

)
. (S4)

SAC-HGRN trains an actor network and a critic network, both of which adopt the HGRN structure
proposed in Section 4.1. In addition to the policy gradient equation discussed in the study, the learning
objective of the actor network in Eq. (S4) is additionally deducted with an estimated baseline value b,
represented as

b = Ea∼π [Q(O, a)] ≈ 1

S

∑
a

π(a|O)Q(O, a), (S5)

where S is the batch size.
During training, we found that the critic network, which provides the learning target for the actor, could

not properly catch up with the update of the actor, resulting in a relatively unstable training process and
slightly worse performance. To this end, we adopt a training strategy named delayed updated policy (DUP)
(Fujimoto et al., 2018; Ye et al., 2022a), which updates the critic network twice as frequently as the actor
network.

The pseudo code that illustrates the training phase of SAC-HGRN is given in Algorithm 1.
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Algorithm 1 Training procedure of SAC-HGRN
1: Initialize an HGRN critic network Q with parameters θQ and a target critic network Q′ with parameters θQ

′ ← θQ

2: Initialize an HGRN actor network π with parameters θπ and a target actor network π′ with parameters θπ
′ ← θπ

3: Initialize the learnable temperature α← α0

4: Set global time step T ← 0

5: for episode=1 to max-episodes do
6: Reset the environment and the hidden states in GRU
7: for local time step t = 1 to episode-length do
8: T ← T + 1

9: for agent i = 1 to N do
10: Obtain the observation of agent i and its neighbors, represented as Oi

t

11: Obtain the GRU’s hidden states of actor hi;π
t and critic hi;Q

t

12: Select the action: ait = argmaxa Q(Oi
t, a; h

i;π
t )

13: Execute the action ait and obtain a reward rit and observations Oi
t+1

14: Obtain the GRU’s hidden states of actor hi;π
t+1 and critic hi;Q

t+1

15: Obtain an experience for agent i: (Oi
t, h

i;Q
t , hi;π

t , ait, r
i
t,Oi

t+1, h
i;Q
t+1, h

i;π
t+1)

16: end for
17: Integrate all agents’ experience at time step t as one tuple and restore it into the replay buffer
18: if T mod update-interval= 0 then
19: Randomly sample S integrated experiences
20: Split each integrated experience into N individual experiences: (Oi

t, h
i;Q
t , hi;π

t , ait, r
i
t, Oi

t+1, h
i;Q
t+1, h

i;π
t+1)

21: for m = 1 to 2 do
22: Update θQ by minimizing the Q loss:

(
rit + V (Oi

t; h
i;Q
t )−Q(Oi

t, a
i
t;h

i;Q
t )

)2
, where V is defined in Eq. (S3) in

the study
23: end for
24: Update θπ based on the Eq. (S4) in the study
25: Update α based on the Eq. (8) in the study
26: end if
27: if T mod target-update-interval= 0 then
28: Update target network Q′ by: θ′ ← θ

29: end if
30: end for
31: end for

2 Environment details

2.1 UAV-MBS

UAV-MBS (Ye et al., 2022b) is a cooperative task with N UAVs that served as mobile base stations to fly
around a target region to provide communication services to the randomly distributed ground users, which
is represented as NPoI point of interests (PoIs). As can be seen in Fig. S1a, each UAV (blue circle) could only
provide services to the PoI within a small coverage range Rcov (dashed green circle), but it could observe PoIs
and other UAVs in a larger observation range Robs (dashed yellow circle), and it could communicate with
other UAVs within a communication range Rcom (dashed blue circle). The UAV is rewarded by the number
of PoIs exclusively covered by itself. Green squares with different shades denote the different numbers of
PoIs. As the observation range is small compared with the map size, UAVs must learn to communicate with
each other and memorize the history information to achieve optimal performance. We follow the continuous
world setting in Ye et al. (2022b).

2.2 Surviving

Surviving (Jiang et al., 2020) is a cooperative task consisting of N agents (green circles) cooperating to
explore a big map and collect the randomly distributed food to prevent starvation. The food is scattered by
Nresource resource points (yellow squares), which are also randomly refreshed over time. Green squares with
different shades denote the different numbers of food items. As can be seen in Fig. S1b, each agent could
observe food, other agents, and the resource point within the observation range Robs, and could communicate
with other agents in the communication range Rcom. When the agent is on a grid that has food, it will store
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Fig. S1 Screenshots of the tested simulation environments: (a) UAV-MBS; (b) Surviving; (c) Pursuit; (d)
cooperative treasure collection (CTC)

the food in its package. At each time step, the agent will consume 1 unit of food in its package, and if
there is no food it will be punished with a negative reward −0.2. This environment is more challenging than
UAV-MBS because the explored food will be consumed and be randomly regenerated in another position,
which requires efficient communication to achieve cooperative exploration.

We tested the environment with the same settings as in Jiang et al. (2020), i.e., N = 100, Ngrid = 30,
Nresource = 8, Robs = 1, and Rcom = 3.

2.3 Pursuit

Pursuit (Zheng et al., 2018) is an adversarial environment that consists of Npredator = 25 learnable
predators and Nprey = 50 pre-trained prey units. The predators (blue circles) are rewarded by attacking the
prey (green circles). Different from UAV-MBS and Surviving, the predator has a large observation range
Robs = 13. As can be seen from Fig. S1c, the predators need to cooperate with nearby teammates to form
stable closure to lock their prey to achieve the optimal performance. As the cooperation is only necessary
among nearby agents, we set a small communication range Rcom = 5.

2.4 Cooperative treasure collection

Cooperative treasure collection (CTC) (Iqbal and Sha, 2019) is a heterogeneous environment with three
types of agents, N hunters (gray circles), NRB red banks (red circles), and NBB blue banks (blue circles).
The hunter can obtain a small reward by collecting each red or blue treasure in its package and could obtain
a large reward by depositing it into the bank with the correct color. The bank is also movable and could
obtain a big reward when a treasure is deposited from the hunter. Each agent has the same observation range
Robs and communication range Rcom. Note that communication among heterogeneous agents is available
in this scenario to achieve better cooperation between the hunter and the bank. The colored dashed arrow
denotes HGAT connectivity.

In this study, we set the environment with the settings of N = 30, NRB = 10, NBB = 10, Robs = 3,
Rcom = 5, and Ngrid = 34.
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3 Experimental settings and results

3.1 Hyper-parameter settings

Hyper-parameter settings related to the training and evaluation process in the four simulation environ-
ments are listed in Table S1.

3.2 Network architecture search result

As can be seen in Fig. S2, two stacked HGAT layers outperform one HGAT layer, which is due to the
larger perception field. The skip-connection (He et al., 2016) over two HGAT layers leads to faster convergence
and slightly better performance. Therefore, we use two stacked HGAT layers with skip-connection as the
communication structure and apply it in DGN, MAAC, Soft-HGRN, and SAC-HGRN.

Table. S1 Hyper-parameter settings of all environments

Hyper-parameters UAV-MBS Surviving Pursuit CTC

Number of agents 20 100 25 30+10+10
Number of episodes 50 000 20 000 40 000 20 000
Episode length 100 500 300 500
Buffer size 5× 104 5× 104 5× 104 5× 104

Initial ε 0.9 0.9 0.9 0.9
Burnin episode 500 500 500 20
ε decay rate 5× 10−4 5× 10−4 5× 10−4 5× 10−4

Minimal ε 0.05 (deterministic policy)/0 (stochastic policy)
Entropy target factor pα 0.7 0.9 0.05 0.3
Update times 4 4 4 4
Update interval 100 timesteps 100 timesteps 100 timesteps 100 timesteps
Target update interval 500 timesteps 500 timesteps 500 timesteps 500 timesteps
Discount factor 0.99 0.99 0.99 0.99
Batch size 128 128 128 128
Optimizer Adam Adam Adam Adam
Learning rate 1× 10−4 1× 10−4 1× 10−4 1× 10−4

Number of attention heads 4 4 4 4
Hidden dimensions 256 256 256 256
Activation ReLU ReLU ReLU ReLU
Initializer Random normal Random normal Random normal Random normal
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Fig. S2 Comparison of Soft-HGRN with different communication structures in UAV-MBS. One-hop, two-hop,
two-hop-SC denote one HGAT layer, two stacked HGAT layers, and two HGAT layers with skip connection,
respectively
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3.3 Learning curves in homogeneous environments

We conducted comparison experiments and ablation studies in three homogeneous scenarios (UAV-MBS,
Surviving, and Pursuit). Each model was updated until convergence. All learning curves can be found in
Figs. S3–S5. Error bars denote the standard derivation over three runs.
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Fig. S3 Learning curves in the UAV-MBS environment: (a) comparison with baselines; (b) ablations in
Soft-HGRN; (c) ablations in SAC-HGRN
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Fig. S4 Learning curves in the Surviving environment: (a) comparison with baselines; (b) ablations in
Soft-HGRN; (c) ablations in SAC-HGRN
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Fig. S5 Learning curves in the Pursuit environment: (a) comparison with baselines; (b) ablations in Soft-
HGRN; (c) ablations in SAC-HGRN
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