Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: jzus@zju.edu.cn

Supplementary materials for

Shilei TU, Huiquan WANG, Yue HUANG, Zhonghe JIN, 2024. A spaceborne advanced storage system for remote sensing microsatellites. Front Inform Technol Electron Eng, 25(4):600-615. https://doi.org/10.1631/FITEE.2200445

Table S1 Bit definitions of user input interface configuration				
Bit	Meaning	Туре	Definition	
63 downto 60	Source ID	read only	Code defined by user, such as $0001b = user0$	
59	Source Mode	read only	0 = periodic signal, $1 =$ burst signal	
58 downto 50	Source Frequency	read only	$1/T_k = 0$ to 511 Hz	
49 downto 34	Source Rate	read only	$v_k = 0$ to 65535 Mbps	
33 downto 30	FIFO Capacity	read only	$q_{max} = 0$ to 2^N	
29 downto 15	Start Address	read only	Start Address << 15	
14 downto 0	End Address	read only	End Address << 15	

Table S2 Bit definitions of user input status

Table 52 Dit definitions of user input status					
Bit	Meaning	Туре	Definition		
63 downto 60	Source ID	read only	Code defined by user, such as $0001b = user0$		
59 downto 58	Priority	read/write	00 = highest priority, $11 =$ lowest priority		
57 downto 56	Max Amount	read/write	Maximum amount when priority $= 00$		
55 downto 52	Error Status	read/write	Code defined by user		
51 downto 49	Power	read/write	0 = power down, $1 =$ power on TMR		
48 downto 46	Use	read/write	0 = disable, 1 = enable TMR		
45 downto 32	FIFO Counter	read only	FIFO Counter $q(k, t)$		
31 downto 0	Remaining Time	read/write	Remaining time $t_{re}(k, t) = N/75000000 s$		

Table S3	Bit definitions of a	ueue scheduling instruction
1 4010 00	Dit actimitions of q	acue seneauning moti action

Bit	Meaning	Definition
31 downto 24	INS HEAD	BCh
23 downto 22	Priority	00 = highest priority, $11 =$ lowest priority
21 downto 19	Priority Self Adjusting	0 = disable, 1 = enable TMR
18 downto 8	Channel Bitmap	A bit = a channel, $0 = \text{not use}, 1 = \text{use}$
7 downto 0	INS TAIL	EFh

Write

Step1: When the task scheduling module detects that it needs to jump to the write task, the Hamming ECC module enters the initialization state and completes the parameter setting according to the user configuration of this partition.

Step2: When data are written to NAND Flash from the pre-write cache, the *RP* and *CP* are computed synchronously along with the data stream according to the rules of the formula.

Step3: When the entire check segment is stored in NAND Flash, the corresponding Hamming code is computed and stored in pre-write code0.

Step4: When the entire page of data has been stored in NAND Flash, the ECC code is subsequently stored in the OOB section of the page. Meanwhile, the external data are stored in pre-write cache1.

Read

Step1: When data are read from NAND Flash to the pre-read cache based on the mapping rules in Fig. 5, the new checksum code is computed in sync with the data stream.

Step2: When the entire check segment of the data has been stored in the pre-read cache and the old ECC is obtained, the codex XORs the old and new ECC codes to compute the error correction operators S0, S1 and S2. If they are all 0, the data are correct. If S0, S1 and S2 have a total of (m+n+3) bits of "1," it indicates that a bit flip has occurred, and the error position is (P_{row}, P_{column}) . Otherwise, it indicates that an unrepairable error has occurred, and the module reports an anomaly to the upper computer.

Step3: Data errors are corrected synchronously with the data stream when the external module reads data from the pre-read cache.

The parameters of step 2 are as follows:

$$S = \{S2, S1, S0\},\$$

$$P_{column} = \{S(2m+5), ..., S(3), S(1)\},\$$

$$P_{row} = \{S(2n+2m+5), ..., S(2m+1), S(2m+7)\}.$$
(S1)

M - 1-1		Frequency	Rate	Packet size
Model	payload	/Hz	/Mbps	/Mb
٨	Cameral	burst	6400	998
A	Camera2	30	1800	4.7
D	Camera3	burst	6720	990
В	Camera4	25	1920	4.7
C	Camera5	0.1	5460	2387
C	Payload1	2	300	85.3
D	Camera6	3	1560	0.29
D	Payload2	5	300	24
A&B	Processor1	2	12000	176
&C	Processor2	2	300	176
&D	Processor3	2	1000	176

Table S5 Payload matrix and parameters of different microsatellites

Fig. S1 Measured DDR3 access bandwidth

Fig. S2 Images used in the experiments

Fig. S3 Program disturbance BER at the room temperature

Fig. S4 Program disturbance BER at -30 °C

Fig. S6 Data retention BER at the room temperature

Fig. S7 Data retention BER during temperature cycling