Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: jzus@zju.edu.cn

1

Supplementary materials for

Wei LI, Junning CUI, Xingyuan BIAN, Limin ZOU, 2024. Vibration harmonic suppression technology for electromagnetic vibrators based on an improved sensorless feedback control method. *Front Inform Technol Electron Eng*, 25(3):472-483. https://doi.org/10.1631/FITEE.2300031

Fig. S1 Schematic diagram of low-frequency dual magnetic circuit horizontal vibrators

Fig. S2 Bode diagram for different values of K_v when R_s is a constant value

Fig. S3 Bode diagram for different values of *R*_s when *K*_v is a constant value

Fig. S4 Root locus of closed-loop system about Kv

Table S1 Amplitudes of the narmonics and total narmonic distortion										
f(Hz)	Method	2 nd (mm)	3 rd (mm)	4 th (mm)	5 th (mm)	γ (%)				
0.01	Open	2.09×10 ⁻¹	3.14×10 ⁻¹	3.31×10 ⁻²	1.26×10 ⁻²	2.526				
	$K_x=1$	1.88×10^{-1}	2.20×10 ⁻¹	2.71×10 ⁻²	2.14×10 ⁻²	1.943				
	$K_{vdc}=0.3, R_s=1 \Omega$	9.68×10 ⁻²	3.17×10 ⁻¹	7.99×10 ⁻³	2.29×10 ⁻²	2.216				
	$K_v=0.3, R_s=0$	9.75×10 ⁻²	2.51×10 ⁻¹	3.15×10 ⁻²	8.81×10 ⁻³	1.808				
	Li W et al. (2023)	2.40×10 ⁻²	2.51×10 ⁻¹	3.15×10 ⁻²	8.81×10 ⁻³	1.809				
0.02	Open	1.37×10 ⁻¹	2.03×10 ⁻¹	1.07×10 ⁻²	6.77×10 ⁻³	1.635				
	$K_x=1$	1.01×10^{-1}	1.79×10 ⁻ 1	9.72×10-3	1.29×10 ⁻²	1.374				
	$K_{\rm vdc}=0.3, R_{\rm s}=1 \ \Omega$	1.14×10^{-1}	1.70×10 ⁻¹	2.17×10 ⁻²	1.65×10 ⁻²	1.377				
	$K_v=0.3, R_s=0$	8.53×10 ⁻²	7.66×10 ⁻²	4.13×10 ⁻³	1.52×10 ⁻³	1.285				

Table S1 Amplitudes of the harmonics and total harmonic distortion

	Li W et al. (2023)	1.72×10 ⁻¹	1.72×10 ⁻¹	1.53×10 ⁻²	8.54×10 ⁻³	1.257
0.05	Open	1.63×10 ⁻¹	1.14×10 ⁻¹	4.77×10 ⁻³	1.16×10 ⁻³	1.327
	$K_x=1$	1.53×10 ⁻¹	1.12×10 ⁻¹	3.72×10 ⁻³	4.33×10 ⁻³	1.265
	$K_{\rm vdc}=0.3, R_{\rm s}=1~\Omega$	1.32×10 ⁻¹	1.05×10 ⁻¹	8.30×10 ⁻³	3.78×10 ⁻³	1.126
	$K_v=0.3, R_s=0$	8.85×10 ⁻²	8.46×10 ⁻²	1.08×10 ⁻²	7.06×10 ⁻³	0.821
	Li W et al. (2023)	1.12×10 ⁻¹	4.99×10 ⁻²	2.35×10-3	5.98×10 ⁻⁴	0.816
0.08	Open	1.00×10^{-1}	7.10×10 ⁻²	2.58×10-3	1.16×10 ⁻³	0.818
	$K_x=1$	1.00×10^{-1}	6.61×10 ⁻²	4.97×10 ⁻³	6.87×10 ⁻⁴	0.800
	$K_{\rm vdc}=0.3, R_{\rm s}=1~\Omega$	6.27×10 ⁻²	7.95×10 ⁻²	1.54×10 ⁻²	8.98×10 ⁻³	0.685
	$K_v=0.3, R_s=0$	6.12×10 ⁻²	5.58×10 ⁻²	1.02×10 ⁻²	5.78×10 ⁻³	0.558
	Li W et al. (2023)	7.79×10 ⁻²	3.31×10 ⁻²	1.00×10 ⁻³	4.59×10 ⁻⁴	0.565
0.10	Open	5.62×10 ⁻²	4.85×10 ⁻²	2.22×10-3	1.07×10 ⁻³	0.495
	$K_x=1$	5.50×10 ⁻²	5.02×10 ⁻²	1.89×10 ⁻³	2.19×10 ⁻³	0.497
	$K_{\rm vdc}=0.3, R_{\rm s}=1~\Omega$	2.89×10 ⁻²	4.83×10 ⁻²	4.93×10 ⁻³	1.48×10 ⁻³	0.377
	$K_v=0.3, R_s=0$	3.18×10 ⁻²	3.15×10 ⁻²	3.70×10 ⁻³	2.10×10-3	0.300
	Li W et al. (2023)	4.31×10 ⁻²	1.88×10 ⁻²	7.55×10 ⁻⁴	2.18×10 ⁻⁴	0.313
0.20	Open	7.56×10 ⁻²	2.97×10 ⁻²	2.19×10 ⁻³	1.92×10 ⁻³	0.542
	$K_x=1$	3.96×10 ⁻²	3.23×10 ⁻²	1.82×10 ⁻³	1.28×10-3	0.341
	$K_{\rm vdc}=0.3, R_{\rm s}=1~\Omega$	5.73×10 ⁻²	1.36×10 ⁻²	1.15×10 ⁻²	9.98×10 ⁻³	0.406
	$K_v=0.3, R_s=0$	4.49×10 ⁻²	1.88×10 ⁻²	6.11×10 ⁻³	2.98×10-3	0.328
	Li W et al. (2023)	4.29×10 ⁻²	1.85×10 ⁻²	4.84×10 ⁻⁴	3.64×10 ⁻⁴	0.312
0.50	Open	1.78×10 ⁻²	1.67×10 ⁻²	6.53×10 ⁻⁴	7.69×10 ⁻⁴	0.163
	$K_x=1$	1.72×10 ⁻²	1.66×10 ⁻²	4.18×10 ⁻⁴	4.64×10 ⁻⁴	0.159
	$K_{\rm vdc}=0.3, R_{\rm s}=1~\Omega$	1.83×10 ⁻²	1.63×10 ⁻²	7.77×10 ⁻⁴	4.94×10 ⁻⁴	0.164
	$K_v=0.3, R_s=0$	1.08×10^{-2}	1.61×10 ⁻²	8.62×10 ⁻⁴	8.98×10 ⁻⁴	0.130
	Li W et al. (2023)	1.73×10 ⁻²	8.02×10 ⁻³	1.51×10 ⁻⁴	1.26×10 ⁻⁴	0.127
0.80	Open	1.01×10 ⁻²	1.61×10 ⁻²	3.91×10 ⁻⁴	6.07×10 ⁻⁴	0.127
	$K_x=1$	1.32×10 ⁻²	1.67×10 ⁻²	6.01×10 ⁻⁴	9.26×10 ⁻⁴	0.142
	$K_{\rm vdc}=0.3, R_{\rm s}=1~\Omega$	1.17×10 ⁻²	1.99×10 ⁻²	3.88×10 ⁻³	3.07×10 ⁻³	0.157
	$K_v=0.3, R_s=0$	5.72×10 ⁻³	1.56×10 ⁻²	7.41×10 ⁻⁴	1.27×10-3	0.111
	Li W et al. (2023)	1.52×10 ⁻²	7.54×10 ⁻³	6.01×10 ⁻⁴	6.77×10 ⁻⁴	0.113
1.00	Open	1.39×10 ⁻²	1.91×10 ⁻²	6.62×10 ⁻⁴	1.31×10 ⁻³	0.158
	$K_x=1$	1.11×10 ⁻²	1.90×10 ⁻²	1.61×10 ⁻⁴	1.19×10 ⁻³	0.147
	$K_{\rm vdc}=0.3, R_{\rm s}=1~\Omega$	5.95×10-3	2.41×10 ⁻²	1.89×10-3	1.79×10 ⁻³	0.166
	$K_v=0.3, R_s=0$	6.91×10 ⁻³	1.80×10^{-2}	7.87×10 ⁻⁴	1.21×10-3	0.129
	Li W et al. (2023)	1.50×10 ⁻²	1.17×10 ⁻²	1.03×10 ⁻³	1.02×10 ⁻³	0.127