Supplementary materials for

Yiwei SUN, Boyang DUAN, Xin SU, Hanning WANG, Qi GU, Jing JIN, Yifei YUAN, 2023. Performance analysis on reconfigurable intelligent surface and network-controlled repeater in 3GPP release-18. Front Inform Technol Electron Eng, 24(12):1815-1828. https://doi.org/10.1631/FITEE. 2300321

1 Proof of Proposition 1

The power of the incident signal into the unit $U_{n, m}$ can be expressed as

$$
\begin{equation*}
P_{n, m}^{\mathrm{in}}=\frac{G_{\mathrm{T}} P_{\mathrm{T}}}{4 \pi\left(r_{n, m}^{\mathrm{T}}\right)^{2}} F_{\mathrm{NCR}}\left(\theta_{n, m}^{\mathrm{T}}, \phi_{n, m}^{\mathrm{T}}\right) d_{x} d_{y} \tag{S1}
\end{equation*}
$$

According to the Friis transfer formula, the received signal is $P_{\mathrm{r}}=P_{\mathrm{t}} G_{\mathrm{t}} G_{\mathrm{r}} \lambda^{2} /(4 \pi d)^{2} L$. Considering the path loss $L=1$, the incident gain is

$$
\begin{equation*}
G_{n, m}^{\mathrm{in}}=F_{\mathrm{NCR}}\left(\theta_{n, m}^{\mathrm{T}}, \phi_{n, m}^{\mathrm{T}}\right) \frac{4 \pi d_{x} d_{y}}{\lambda^{2}} \tag{S2}
\end{equation*}
$$

The receiving power for unit $U_{n, m}$ in NCR is

$$
\begin{equation*}
P_{n, m}^{(1)}=\left|\exp \left(\mathrm{j} \beta_{n, m}\right)\right|^{2} P_{n, m}^{\mathrm{in}} . \tag{S3}
\end{equation*}
$$

The corresponding electric field of the incident signal into $U_{n, m}$ is

$$
\begin{equation*}
E_{n, m}^{(1)}=\sqrt{\frac{2 Z_{0} P_{n, m}^{(1)}}{d_{x} d_{y}}} \exp \left(-\frac{\mathrm{j} 2 \pi}{\lambda} r_{n, m}^{\mathrm{T}}\right) . \tag{S4}
\end{equation*}
$$

The total electric field of the received signal is the superposition of the electric fields reflected by all unit cells toward the receiver, which can be written as

$$
\begin{equation*}
E^{(1)}=\sum_{m=1-\frac{M_{\mathrm{NCR}}}{2}}^{\frac{M_{\mathrm{NCR}}}{2}} \sum_{n=1-\frac{N_{\mathrm{NCR}}}{2}}^{\frac{N_{\mathrm{NCR}}}{2}} E_{n, m}^{(1)} \tag{S5}
\end{equation*}
$$

The receiving power at the NCR from the transmitter is $P^{(1)}=\left|E^{(1)}\right|^{2} d_{x} d_{y} /\left(2 Z_{0}\right)$. Under far-field assumption, $\theta_{n, m}^{\mathrm{T}} \rightarrow \theta_{\mathrm{T}}$ and $\phi_{n, m}^{\mathrm{T}} \rightarrow \phi_{\mathrm{T}}$. Thus, we have

$$
\begin{equation*}
P^{(1)}=P_{\mathrm{T}} \frac{G_{\mathrm{T}} F_{\mathrm{NCR}}\left(\theta_{\mathrm{T}}, \phi_{\mathrm{T}}\right) d_{x} d_{y}}{4 \pi d_{\mathrm{T}}^{2}}\left|\sum_{m=1-\frac{M_{\mathrm{NCR}}}{2}}^{\frac{M_{\mathrm{NCR}}}{2}} \sum_{n=1-\frac{N_{\mathrm{NCR}}}{2}}^{\frac{N_{\mathrm{NCR}}}{2}} \exp \left(\mathrm{j} \beta_{n, m}-2 \pi \frac{r_{n, m}^{\mathrm{T}}}{\lambda}\right)\right|^{2} \tag{S6}
\end{equation*}
$$

The position of the transmitter can be expressed as

$$
\begin{equation*}
\left(x_{\mathrm{T}}, y_{\mathrm{T}}, z_{\mathrm{T}}\right)=\left(d_{\mathrm{T}} \sin \theta_{\mathrm{T}} \cos \phi_{\mathrm{T}}, d_{\mathrm{T}} \sin \theta_{\mathrm{T}} \sin \phi_{\mathrm{T}}, d_{\mathrm{T}} \cos \theta_{\mathrm{T}}\right) . \tag{S7}
\end{equation*}
$$

Thus, $r_{n, m}^{\mathrm{T}}$ can be written as follows:

$$
\begin{align*}
r_{n, m}^{\mathrm{T}} & =\sqrt{\left(d_{\mathrm{T}} \sin \theta_{\mathrm{T}} \cos \phi_{\mathrm{T}}-\left(m-\frac{1}{2}\right) d_{x}\right)^{2}+\left(d_{\mathrm{T}} \sin \theta_{\mathrm{T}} \sin \phi_{\mathrm{T}}-\left(n-\frac{1}{2}\right) d_{y}\right)^{2}+\left(d_{\mathrm{T}} \cos \theta_{\mathrm{T}}\right)^{2}} \tag{S8}\\
& \approx d_{\mathrm{T}}-\sin \theta_{\mathrm{T}} \cos \phi_{\mathrm{T}}\left(m-\frac{1}{2}\right) d_{x}-\sin \theta_{\mathrm{T}} \sin \phi_{\mathrm{T}}\left(n-\frac{1}{2}\right) d_{y} .
\end{align*}
$$

To divide M_{NCR} and N_{NCR}, we let $\lambda \beta_{n, m} /(2 \pi)=\epsilon_{1}^{\mathrm{NCR}}(m-1 / 2) d_{x}+\epsilon_{2}^{\mathrm{NCR}}(n-1 / 2) d_{y}$. Then, the phase part in Eq. (S6) can be written as

$$
\begin{align*}
& \sum_{m=1-\frac{M_{\mathrm{NCR}}}{2}}^{\frac{M_{\mathrm{NCR}}}{2}} \sum_{n=1-\frac{N_{\mathrm{NCR}}}{2}}^{\frac{N_{\mathrm{NCR}}}{2}} \exp \left(\mathrm{j} \beta_{n, m}-2 \pi \frac{r_{n, m}^{\mathrm{T}}}{\lambda}\right) \\
= & \sum_{m=1-\frac{M_{\mathrm{NCR}}}{2}}^{\frac{M_{\mathrm{NCR}}}{2}} \exp \left(\mathrm{j} \frac{2 \pi}{\lambda}\left(m-\frac{1}{2}\right)\left(\sin \theta_{\mathrm{T}} \cos \phi_{\mathrm{T}}+\epsilon_{1}^{\mathrm{NCR}}\right) d_{x}\right) \sum_{n=1-\frac{N_{\mathrm{NCR}}}{2}}^{\sum_{n}^{2}} \exp \left(\mathrm{j} \frac{2 \pi}{\lambda}\left(n-\frac{1}{2}\right)\left(\sin \theta_{\mathrm{T}} \sin \phi_{\mathrm{T}}+\epsilon_{2}^{\mathrm{NCR}}\right) d_{y}\right) \\
= & M_{\mathrm{NCR}} N_{\mathrm{NCR}} \frac{\operatorname{sinc}\left(\frac{M_{\mathrm{NCR}} \pi}{\lambda}\left(\sin \theta_{\mathrm{T}} \cos \phi_{\mathrm{T}}+\epsilon_{1}^{\mathrm{NCR}}\right) d_{x}\right)}{\operatorname{sinc}\left(\frac{\pi}{\lambda}\left(\sin \theta_{\mathrm{T}} \cos \phi_{\mathrm{T}}+\epsilon_{1}^{\mathrm{NCR}}\right) d_{x}\right)} \frac{\operatorname{sinc}\left(\frac{N_{\mathrm{NCR}} \pi}{\lambda}\left(\sin \theta_{\mathrm{T}} \sin \phi_{\mathrm{T}}+\epsilon_{2}^{\mathrm{NCR}}\right) d_{y}\right)}{\operatorname{sinc}\left(\frac{\pi}{\lambda}\left(\sin \theta_{\mathrm{T}} \sin \phi_{\mathrm{T}}+\epsilon_{2}^{\mathrm{NCR}}\right) d_{y}\right)} . \tag{S9}
\end{align*}
$$

Obviously, we can achieve the maximum received power

$$
\begin{equation*}
P_{\max }^{(1)}=P_{\mathrm{T}} \frac{G_{\mathrm{T}} M_{\mathrm{NCR}}^{2} N_{\mathrm{NCR}}^{2} d_{x} d_{y} F_{\mathrm{NCR}}\left(\theta_{\mathrm{T}}, \phi_{\mathrm{T}}\right)}{4 \pi d_{\mathrm{T}}^{2}} \tag{S10}
\end{equation*}
$$

when $\sin \theta_{\mathrm{T}} \cos \phi_{\mathrm{T}}+\epsilon_{1}^{\mathrm{NCR}}=0$ and $\sin \theta_{\mathrm{T}} \sin \phi_{\mathrm{T}}+\epsilon_{2}^{\mathrm{NCR}}=0$. Correspondingly, the beamforming coefficient at unit $U_{n, m}$ is

$$
\begin{align*}
\beta_{n, m} & =\frac{2 \pi}{\lambda}\left(\epsilon_{1}^{\mathrm{NCR}}\left(m-\frac{1}{2}\right) d_{x}+\epsilon_{2}^{\mathrm{NCR}}\left(n-\frac{1}{2}\right) d_{y}\right) \\
& =-\frac{2 \pi}{\lambda}\left(\left(m-\frac{1}{2}\right) d_{x} \sin \theta_{\mathrm{T}} \cos \phi_{\mathrm{T}}+\left(n-\frac{1}{2}\right) d_{y} \sin \theta_{\mathrm{T}} \sin \phi_{\mathrm{T}}\right) . \tag{S11}
\end{align*}
$$

2 Proof of Proposition 2

Given transmission coefficients $\operatorname{vec}\left(\left[q_{n, m} \exp \left(\mathrm{j} \alpha_{n, m}\right)\right]_{n=1: N_{\mathrm{NCR}}}^{m=1: M_{\mathrm{NCR}}}\right)$, the transmitting power at $U_{n, m}$ is

$$
\begin{equation*}
P_{n, m}^{(2)}=P_{n, m}^{\mathrm{R}} q_{n, m}=q_{n, m}\left|\exp \left(\mathrm{j} \alpha_{n, m}\right)\right|^{2} \bar{P}_{n, m}^{(1)}, \tag{S12}
\end{equation*}
$$

where $\bar{P}_{n, m}^{(1)}$ is the re-assigned received power at the NCR and $\sum_{n=1-N_{\mathrm{NCR}}}^{N_{\mathrm{NCR}}} \sum_{m=1-M_{\mathrm{NCR}}}^{M_{\mathrm{NCR}}} \bar{P}_{n, m}^{(1)}=P_{\max }^{(1)}$. For $U_{n, m}$, the received power at the receiver is

$$
\begin{equation*}
P_{n, m}^{\mathrm{NCR}}=P_{n, m}^{(2)} \frac{G_{\mathrm{NCR}} G_{\mathrm{R}} \lambda^{2}}{16 \pi^{2}\left(r_{n, m}^{\mathrm{R}}\right)^{2}} F_{\mathrm{NCR}}\left(\theta_{n, m}^{\mathrm{R}}, \phi_{n, m}^{\mathrm{R}}\right) \tag{S13}
\end{equation*}
$$

The corresponding electric field is

$$
\begin{equation*}
E_{n, m}^{(2)}=\sqrt{\frac{8 \pi Z_{0} P_{n, m}^{\mathrm{R}}}{G_{\mathrm{R}} \lambda^{2}}} \exp \left(\frac{-\mathrm{j} 2 \pi}{\lambda} r_{n, m}^{\mathrm{R}}\right) . \tag{S14}
\end{equation*}
$$

The total electric field at the receiver is

$$
\begin{equation*}
E^{(2)}=\sum_{m=1-\frac{M_{\mathrm{NCR}}}{2}}^{\frac{M_{\mathrm{NCR}}}{2}} \sum_{n=1-\frac{N_{\mathrm{NCR}}}{2}}^{\frac{N_{\mathrm{NCR}}}{2}} E_{n, m}^{(2)} . \tag{S15}
\end{equation*}
$$

Similar to the transmitter-NCR link, the received power at the receiver is

$$
\begin{equation*}
P_{\mathrm{NCR}}=\frac{G_{\mathrm{NCR}} G_{\mathrm{R}} \lambda^{2} F_{\mathrm{NCR}}\left(\theta_{\mathrm{R}}, \phi_{\mathrm{R}}\right)}{16 \pi^{2} d_{\mathrm{R}}^{2}} \left\lvert\, \sum_{m=1-\frac{M_{\mathrm{NCR}}}{2}}^{\frac{M_{\mathrm{NCR}}}{2}} \sum_{n=1-\frac{N_{\mathrm{NCR}}}{2}}^{\frac{N_{\mathrm{NCR}}}{2}} \sqrt{q_{n, m} \bar{P}_{n, m}^{(1)}} \cdot \exp \left(\mathrm{j}\left(\alpha_{n, m}-\frac{2 \pi}{\lambda} r_{n, m}^{\mathrm{R}}\right)\right)^{2}\right. \tag{S16}
\end{equation*}
$$

Given uniform power distribution assumption $\bar{P}_{n, m}^{(1)}=P_{\max }^{(1)} /\left(M_{\mathrm{NCR}} N_{\mathrm{NCR}}\right)$ and unified magnitude at the NCR $q_{n, m}=B(\forall n$ and $\forall m)$, the received power at the receiver can be further simplified as
$P_{\mathrm{NCR}}=$
$P_{\mathrm{T}} \frac{G_{\mathrm{T}} G_{\mathrm{R}} G_{\mathrm{NCR}} M_{\mathrm{NCR}}^{2} N_{\mathrm{NCR}}^{2} d_{x} d_{y} \lambda^{2} B}{64 \pi^{3} d_{\mathrm{T}}^{2} d_{\mathrm{R}}^{2}} F_{\mathrm{NCR}}\left(\theta_{\mathrm{T}}, \phi_{\mathrm{T}}\right) F_{\mathrm{NCR}}\left(\theta_{\mathrm{R}}, \phi_{\mathrm{R}}\right)\left|\sum_{m=1-\frac{M_{\mathrm{NCR}}}{2}}^{\sum_{n=1-\frac{N_{\mathrm{NCR}}}{2}}^{2}} \exp \left(\mathrm{j}\left(\alpha_{n, m}-\frac{2 \pi_{\mathrm{NCR}}}{\lambda} r_{n, m}^{\mathrm{R}}\right)\right)\right|^{2}$.
As Eq. (S9), we let $\lambda \alpha_{n, m} /(2 \pi)=\epsilon_{3}^{\mathrm{NCR}}(m-1 / 2) d_{x}+\epsilon_{4}^{\mathrm{NCR}}(n-1 / 2) d_{y}$. Then, the phase part in Eq. (S17) can be written as

$$
\begin{align*}
& \sum_{m=1-\frac{M_{\mathrm{NCR}}}{2}}^{\frac{M_{\mathrm{NCR}}}{2}} \sum_{n=1-\frac{N_{\mathrm{NCR}}}{2}}^{\frac{N_{\mathrm{NCR}}}{2}} \exp \left(\mathrm{j} \alpha_{n, m}-2 \pi \frac{r_{n, m}^{\mathrm{R}}}{\lambda}\right) \tag{S18}\\
= & M_{\mathrm{NCR}} N_{\mathrm{NCR}} \frac{\operatorname{sinc}\left(\frac{M_{\mathrm{NCR}} \pi}{\lambda}\left(\sin \theta_{\mathrm{R}} \cos \phi_{\mathrm{R}}+\epsilon_{3}^{\mathrm{NCR}}\right) d_{x}\right)}{\operatorname{sinc}\left(\frac{\pi}{\lambda}\left(\sin \theta_{\mathrm{R}} \cos \phi_{\mathrm{R}}+\epsilon_{3}^{\mathrm{NCR}}\right) d_{x}\right)} \frac{\operatorname{sinc}\left(\frac{N_{\mathrm{NCR}} \pi}{\lambda}\left(\sin \theta_{\mathrm{R}} \sin \phi_{\mathrm{R}}+\epsilon_{4}^{\mathrm{NCR}}\right) d_{y}\right)}{\operatorname{sinc}\left(\frac{\pi}{\lambda}\left(\sin \theta_{\mathrm{R}} \sin \phi_{\mathrm{R}}+\epsilon_{4}^{\mathrm{NCR}}\right) d_{y}\right)} .
\end{align*}
$$

Obviously, we can achieve the maximum received power

$$
\begin{equation*}
P_{\mathrm{NCR}}^{\max }=P_{\mathrm{T}} \frac{G_{\mathrm{T}} G_{\mathrm{R}} G_{\mathrm{NCR}} M_{\mathrm{NCR}}^{3} N_{\mathrm{NCR}}^{3} d_{x} d_{y} \lambda^{2} B}{64 \pi^{3} d_{\mathrm{T}}^{2} d_{\mathrm{R}}^{2}} F_{\mathrm{NCR}}\left(\theta_{\mathrm{T}}, \phi_{\mathrm{T}}\right) F_{\mathrm{NCR}}\left(\theta_{\mathrm{R}}, \phi_{\mathrm{R}}\right), \tag{S19}
\end{equation*}
$$

when $\sin \theta_{\mathrm{R}} \cos \phi_{\mathrm{R}}+\epsilon_{3}^{\mathrm{NCR}}=0$ and $\sin \theta_{\mathrm{R}} \sin \phi_{\mathrm{R}}+\epsilon_{4}^{\mathrm{NCR}}=0$. Correspondingly, the transmission coefficient at unit $U_{n, m}$ is

$$
\begin{align*}
\alpha_{n, m} & =\frac{2 \pi}{\lambda}\left(\epsilon_{3}^{\mathrm{NCR}}\left(m-\frac{1}{2}\right) d_{x}+\epsilon_{3}^{\mathrm{NCR}}\left(n-\frac{1}{2}\right) d_{y}\right) \\
& =-\frac{2 \pi}{\lambda}\left(\left(m-\frac{1}{2}\right) d_{x} \sin \theta_{\mathrm{R}} \cos \phi_{\mathrm{R}}+\left(n-\frac{1}{2}\right) d_{y} \sin \theta_{\mathrm{R}} \sin \phi_{\mathrm{R}}\right) . \tag{S20}
\end{align*}
$$

