Electronic Supplementary Materials

For https://doi.org/10.1631/jzus.A2100084

Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory

Min-jie WEN ${ }^{\dagger 1,2}$, Kui-hua WANG ${ }^{1,2}$, Wen-bing WU 3, Yun-peng ZHANG ${ }^{3}$, Hou-ren XIONG ${ }^{4}$
${ }^{1}$ Research Center of Coastal Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
${ }^{2}$ MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
${ }^{3}$ Engineering Research Centre of Rock-Soil Drilling \& Excavation and Protection, Ministry of Education, Faculty of Engineering,
China University of Geosciences, Wuhan 430074, China

${ }^{4}$ Jiaxing Key Laboratory of Building Energy Efficiency Technology, Jiaxing University, Jiaxing 314001, China
†E-mail: 0620577@zju.edu.cn

Data S1 Derivation of the analytical solution for Eqs. (25) and (26)

For clarity, Eqs. (25) and (26) can be specifically rewritten for medium (1) as:

$$
\begin{gather*}
{\left[\frac{\partial^{2}}{\partial x^{2}}-\left(\frac{b_{1} \mathrm{i} \omega}{\left(\lambda_{1}+2 \mu_{1}\right) \xi_{2}}+\frac{\rho_{\mathrm{f} 1} \omega^{2}}{\rho_{1}}-\omega^{2}\right)\right] e_{1}=\left[\frac{\beta_{1} T_{0}}{\lambda_{1}+2 \mu_{1}} \frac{\partial^{2}}{\partial x^{2}}-\frac{b_{1} \alpha_{\mathrm{f} 1} \mathrm{i} \omega T_{0}}{\left(\lambda_{1}+2 \mu_{1}\right) \xi_{2}}\right] \theta_{1},} \tag{A-1}\\
\frac{\beta_{1} \mathrm{i} \omega}{m_{1}}\left(1+\frac{\left.\tau_{1}^{\alpha_{1}} \mathrm{i} \omega\right)^{\alpha_{1}}}{\alpha_{1}!}\right) e_{1}=\left[\frac{\partial^{2}}{\partial x^{2}}-\mathrm{i} \omega\left(1+\frac{\tau_{1}^{\alpha_{1}}(\mathrm{i} \omega)^{\alpha_{1}}}{\alpha_{1}!}\right)\right] \theta_{1}, \tag{A-2}
\end{gather*}
$$

Eqs. (A-1) and (A-2) can be further simplified as:

$$
\begin{gather*}
\left(\frac{\partial^{2}}{\partial x^{2}}-a_{1}\right) e_{1}=\left(a_{4} \frac{\partial^{2}}{\partial x^{2}}-a_{5}\right) \theta_{1}, \tag{A-3}\\
a_{3} e_{1}=\left(\frac{\partial^{2}}{\partial x^{2}}-a_{2}\right) \theta_{1}, \tag{A-4}
\end{gather*}
$$

where $\quad a_{1}=\frac{b_{1} \mathrm{i} \omega}{\left(\lambda_{1}+2 \mu_{1}\right) \xi_{2}}+\frac{\rho_{\mathrm{fj}} \omega^{2}}{\rho_{1}}-\omega^{2}, \quad a_{2}=\mathrm{i} \omega\left(1+\frac{\tau_{1}^{\alpha_{1}}(\mathrm{i} \omega)^{\alpha_{1}}}{\alpha_{1}!}\right), \quad a_{3}=\frac{\beta_{1} \mathrm{i} \omega}{m_{1}}\left(1+\frac{\tau_{1}^{\alpha_{1}}(\mathrm{i} \omega)^{\alpha_{1}}}{\alpha_{1}!}\right), \quad a_{4}=\frac{\beta_{1} T_{0}}{\lambda_{1}+2 \mu_{1}}$, and $a_{5}=\frac{b_{1} \omega \alpha_{\mathrm{f} 1} T_{0}}{\left(\lambda_{1}+2 \mu_{1}\right) \xi_{2}}$.

Combining Eq. (A-3) and Eq. (A-4), one obtains the following fourth order partial differential equation:

$$
\begin{equation*}
\left(\frac{\partial^{4}}{\partial x^{4}}-A_{1} \frac{\partial^{2}}{\partial x^{2}}+A_{2}\right) \theta_{1}=0 \tag{A-5}
\end{equation*}
$$

where $A_{1}=a_{1}+a_{2}+a_{3} a_{4}$ and $A_{2}=a_{1} a_{2}+a_{3} a_{5}$.
In a similar manner, the following expression can be derived:

$$
\begin{equation*}
\left(\frac{\partial^{4}}{\partial x^{4}}-A_{1} \frac{\partial^{2}}{\partial x^{2}}+A_{2}\right) e_{1}=0 \tag{A-6}
\end{equation*}
$$

Eq. (A-5) can be further decomposed to:

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}-M_{1}^{2}\right)\left(\frac{\partial^{2}}{\partial x^{2}}-M_{2}^{2}\right) \theta_{1}=0 \tag{A-7}
\end{equation*}
$$

where $M_{1}^{2}=\frac{A_{1}+\sqrt{A_{1}^{2}-4 A_{2}}}{2}$ and $M_{2}^{2}=\frac{A_{1}-\sqrt{A_{1}^{2}-4 A_{2}}}{2}$ are the characteristic roots of Eq. (A-5).
Consequently, the solution of Eq. (A-5) can be given by:

$$
\begin{equation*}
\theta_{1}=\sum_{i=1}^{2} B_{i} e^{-M_{i} x}+\sum_{i=1}^{2} C_{i} e^{M_{i} x}, \tag{A-8}
\end{equation*}
$$

where B_{i} and C_{i} are undetermined coefficients.

Data S2 Derivation of the analytical solution for medium 2

And similarly, the governing equations of medium (2) are obtained as:

$$
\begin{gather*}
{\left[\frac{\lambda_{2}+2 \mu_{2}}{\rho_{2} \xi_{1}^{2}} \frac{\partial^{2}}{\partial x^{2}}-\left(\frac{b_{2} \mathrm{i} \omega}{\rho_{2} \xi_{1}^{2} \xi_{2}}+\frac{\rho_{\mathrm{f} 2} \omega^{2}}{\rho_{2}}-\omega^{2}\right)\right] e_{2}=\left(\frac{\beta_{2} T_{0}}{\rho_{2} \xi_{1}^{2}} \frac{\partial^{2}}{\partial x^{2}}-\frac{b_{2} \mathrm{i} \omega \alpha_{\mathrm{f} 2} T_{0}}{\rho_{2} \xi_{1}^{2} \xi_{2}}\right) \theta_{2},} \tag{B-1}\\
\frac{\beta_{2} \mathrm{i} \omega}{k_{2} \xi_{2}}\left(1+\frac{\tau_{2}^{\alpha_{2}}(\mathrm{i} \omega)^{\alpha_{2}}}{\alpha_{2}!}\right) e_{2}=\left[\frac{\partial^{2}}{\partial x^{2}}-\frac{m_{2} \mathrm{i} \omega}{k_{2} \xi_{2}}\left(1+\frac{\tau_{2}^{\alpha_{2}}(\mathrm{i} \omega)^{\alpha_{2}}}{\alpha_{2}!}\right)\right] \theta_{2}, \tag{B-2}
\end{gather*}
$$

Eqs. (B-1) and (B-2) can be respectively simplified as:

$$
\begin{gather*}
\left(\eta_{1} \frac{\partial^{2}}{\partial x^{2}}-\eta_{2}\right) e_{2}=\left(\eta_{3} \frac{\partial^{2}}{\partial x^{2}}-\eta_{4}\right) \theta_{2} \tag{B-3}\\
\eta_{5} e_{2}=\left(\frac{\partial^{2}}{\partial x^{2}}-\eta_{6}\right) \theta_{2} \tag{B-4}
\end{gather*}
$$

where $\eta_{1}=\frac{\lambda_{2}+2 \mu_{2}}{\rho_{2} \xi_{1}^{2}}, \quad \eta_{2}=\frac{b_{2} \mathrm{i} \omega}{\rho_{2} \xi_{1}^{2} \xi_{2}}+\frac{\rho_{\mathrm{f} 2} \omega^{2}}{\rho_{2}}-\omega^{2}, \quad \eta_{3}=\frac{\beta_{2} T_{0}}{\rho_{2} \xi_{1}^{2}}, \quad \eta_{4}=\frac{b_{2} \mathrm{i} \omega \alpha_{\mathrm{f}} T_{0}}{\rho_{2} \xi_{1}^{2} \xi_{2}}, \quad \eta_{5}=\frac{\beta_{2} \mathrm{i} \omega\left(1+\frac{\tau_{2}^{\alpha_{2}}(\mathrm{i} \omega)^{\alpha_{2}}}{\alpha_{2}!}\right)}{k_{2} \xi_{2}}$, and $\eta_{6}=\frac{m_{2} \mathrm{i} \omega}{k_{2} \xi_{2}}\left(1+\frac{\tau_{2}^{\alpha_{2}}(\mathrm{i} \omega)^{\alpha_{2}}}{\alpha_{2}!}\right)$.

Similar to the derivation process of medium (1), a similar equation for medium (2) is obtained from Eqs. (B-3) and (B-4) as:

$$
\begin{equation*}
\left(\eta_{1} \frac{\partial^{4}}{\partial x^{4}}-A_{3} \frac{\partial^{2}}{\partial x^{2}}+A_{4}\right) \theta_{2}=0 \tag{B-5}
\end{equation*}
$$

where $A_{3}=\eta_{1} \eta_{6}+\eta_{2}+\eta_{3} \eta_{5}$ and $A_{4}=\eta_{2} \eta_{6}+\eta_{4} \eta_{5}$.
In a similar manner, the following expression can be derived:

$$
\begin{equation*}
\left(\eta_{1} \frac{\partial^{4}}{\partial x^{4}}-A_{3} \frac{\partial^{2}}{\partial x^{2}}+A_{4}\right) e_{2}=0 \tag{B-6}
\end{equation*}
$$

Eq. (B-5) can be factorized as:

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}-N_{1}^{2}\right)\left(\frac{\partial^{2}}{\partial x^{2}}-N_{2}^{2}\right) \theta_{2}=0 \tag{B-7}
\end{equation*}
$$

where $N_{1}^{2}=\frac{A_{3}+\sqrt{A_{3}^{2}-4 \eta_{1} A_{4}}}{2 \eta_{1}}$ and $N_{2}^{2}=\frac{A_{3}-\sqrt{A_{3}^{2}-4 \eta_{1} A_{4}}}{2 \eta_{1}}$ are the characteristic roots of Eq. (B-5).
Consequently, according to the boundary conditions $x \rightarrow \infty, \theta_{2}=0, u_{2}=0$, and $p_{\mathrm{f} 2}=0$, the solution of Eq. (B-5) can be given by:

$$
\begin{equation*}
\theta_{2}=\sum_{i=1}^{2} E_{i} e^{-N_{i} x} \tag{B-8}
\end{equation*}
$$

Similarly, the following expressions can be derived:

$$
\begin{gather*}
e_{1}=\sum_{i=1}^{2} G_{i} e^{-M_{i} x}+\sum_{i=1}^{2} H_{i} e^{M_{i} x}, \tag{B-9}\\
e_{2}=\sum_{i=1}^{2} I_{i} e^{-N_{i} x}, \tag{B-10}
\end{gather*}
$$

where E_{i}, G_{i}, H_{i}, and I_{i} are undetermined coefficients.
Substituting Eqs. (A-8) and (B-9) into Eq. (A-4), the relationship between B_{i} and G_{i}, as well as that between C_{i} and H_{i} can be derived as:

$$
\begin{equation*}
G_{i}=\delta_{i} B_{i}, \quad H_{i}=\delta_{i} C_{i} \tag{B-11}
\end{equation*}
$$

where $\delta_{i}=\frac{M_{i}^{2}-a_{2}}{a_{3}}$.
In addition, substituting Eqs. (B-8) and (B-10) into Eq. (B-3), the relationship between E_{i} and I_{i} can be derived:

$$
\begin{equation*}
I_{i}=\gamma_{i} E_{i}, \tag{B-12}
\end{equation*}
$$

where $\gamma_{i}=\frac{N_{i}^{2}-\eta_{6}}{\eta_{5}}$.
Therefore, e_{1} and e_{2} can be respectively expressed as:

$$
\begin{gather*}
e_{1}=\sum_{i=1}^{2} \delta_{i} B_{i} e^{-M_{i} x}+\sum_{i=1}^{2} \delta_{i} C_{i} e^{M_{i} x}, \tag{B-13}\\
e_{2}=\sum_{i=1}^{2} \gamma_{i} E_{i} e^{-N_{i} x}, \tag{B-14}
\end{gather*}
$$

According to $e_{j}=\partial u_{j} / \partial x$ and the boundary condition given by Eqs. (3) $\sim(5), u_{1}$ and u_{2} can be respectively expressed as:

$$
\begin{gather*}
u_{1}=-\sum_{i=1}^{2} \frac{\delta_{i}}{M_{i}} B_{i} e^{-M_{i} x}+\sum_{i=1}^{2} \frac{\delta_{i}}{M_{i}} C_{i} e^{M_{i} x}+J_{1} \tag{B-15}\\
u_{2}=-\sum_{i=1}^{2} \frac{\gamma_{i}}{N_{i}} E_{i} e^{-N_{i} x} \tag{B-16}
\end{gather*}
$$

Substituting Eqs. (A-8) and (B-15) into Eq. (20), the pore water pressure in the first layer can be written as:

$$
\begin{align*}
& p_{\mathrm{fl}}=\sum_{i=1}^{2}\left[\frac{\lambda_{1}+2 \mu_{1}}{\mu_{1}} \delta_{i}-\frac{\beta_{1} T_{0}}{\mu_{1}}+\frac{\omega^{2}\left(\lambda_{1}+2 \mu_{1}\right)}{\mu_{1}} \frac{\delta_{i}}{M_{i}^{2}}\right] B_{i} e^{-M_{i} x}+ \\
& \sum_{i=1}^{2}\left[\frac{\lambda_{1}+2 \mu_{1}}{\mu_{1}} \delta_{i}-\frac{\beta_{1} T_{0}}{\mu_{1}}+\frac{\omega^{2}\left(\lambda_{1}+2 \mu_{1}\right)}{\mu_{1}} \frac{\delta_{i}}{M_{i}^{2}}\right] C_{i} e^{M_{i} x}+\frac{\omega^{2}\left(\lambda_{1}+2 \mu_{1}\right)}{\mu_{1}} J_{1} x+J_{2}, \tag{B-17}
\end{align*}
$$

where J_{1} and J_{2} are undetermined coefficients.
Substituting Eqs. (B-8) and (B-16) into Eq. (20), the pore water pressure in the second layer can be written as:

$$
\begin{equation*}
p_{\mathrm{f} 2}=\sum_{i=1}^{2}\left[\frac{\lambda_{2}+2 \mu_{2}}{\mu_{1}} \gamma_{i}-\frac{\beta_{2} T_{0}}{\mu_{1}}+\frac{\omega^{2} \rho_{2} \xi_{1}^{2}}{\mu_{1}} \frac{\gamma_{i}}{N_{i}^{2}}\right] E_{i} e^{-N_{i} x}, \tag{B-18}
\end{equation*}
$$

Substituting Eqs. (A-8), (B-15), and (B-16) into Eq. (19), the stresses in the first and second layers can be obtained as:

$$
\begin{gather*}
\sigma_{1}=-\sum_{i=1}^{2}\left[\frac{\omega^{2}\left(\lambda_{1}+2 \mu_{1}\right)}{\mu_{1}} \frac{\delta_{i}}{M_{i}^{2}}\right] B_{i} e^{-M_{i} x}-\sum_{i=1}^{2}\left[\frac{\omega^{2}\left(\lambda_{1}+2 \mu_{1}\right)}{\mu_{1}} \frac{\delta_{i}}{M_{i}^{2}}\right] C_{i} e^{M_{i} x}-\frac{\omega^{2}\left(\lambda_{1}+2 \mu_{1}\right)}{\mu_{1}} J_{1} x-J_{2}, \tag{B-19}\\
\sigma_{2}=-\sum_{i=1}^{2} \frac{\omega^{2} \rho_{2} \xi_{1}^{2}}{\mu_{1}} \frac{\gamma_{i}}{N_{i}^{2}} E_{i} e^{-N_{i} x} . \tag{B-20}
\end{gather*}
$$

Performing normalization on Eqs. (1), (2), and (6) (11), the corresponding expressions can be written in frequency domain as follows:

$$
\begin{gather*}
\left.\sigma_{1}\right|_{x=0}=0, \tag{B-21}\\
\left.\theta_{1}\right|_{x=0}=\theta_{0}, \tag{B-22}\\
\left.p_{\mathrm{f} 1}\right|_{x=0}=0, \tag{B-23}\\
\left.X_{\mathrm{T}} \frac{\partial \theta_{1}}{\partial x}\right|_{x=h}=-\left[1+\frac{\tau_{1}^{\alpha_{1}}}{\alpha_{1}!}(\mathrm{i} \omega)^{\alpha_{1}}\right]\left(\left.\theta_{1}\right|_{x=h}-\left.\theta_{2}\right|_{x=h}\right) . \tag{B-24}
\end{gather*}
$$

where $X_{\mathrm{T}}=k_{1} \xi_{1}^{2} \xi_{2}^{2} / h m$ denotes the dimensionless thermal contact resistance.

$$
\begin{gather*}
\left.\frac{\partial \theta_{1}}{\partial x}\right|_{x=h}=\left.\frac{k_{2}}{k_{1}} \frac{\left[1+\frac{\tau_{1}^{\alpha_{1}}}{\alpha_{1}!}(\mathrm{i} \omega)^{\alpha_{1}}\right]}{\left[1+\frac{\tau_{2}^{\alpha_{2}}}{\alpha_{2}!}(\mathrm{i} \omega)^{\alpha_{2}}\right.} \frac{\partial \theta_{2}}{\partial x}\right|_{x=h}, \tag{B-25}\\
\left.u_{1}\right|_{x=h}=\left.u_{2}\right|_{x=h} \tag{B-26}\\
\frac{\left.\sigma_{2}\right|_{x=h}}{\left.\sigma_{1}\right|_{x=h}}=\frac{2}{1+Z_{1} / Z_{2}} \tag{B-27}\\
\left.p_{\mathrm{f} 1}\right|_{x=h}=\left.p_{\mathrm{f} 2}\right|_{x=h} \tag{B-28}
\end{gather*}
$$

Substituting Eqs. (A-8), (B-8) and (B-15)~(B-20) into Eqs. (B-21) (B-28), the undetermined coefficients B_{i}, C_{i}, E_{i}, and J_{i} can be derived, which form the analytical solutions to the THM coupling response of the bilayered saturated porous media.

