
Electronic supplementary materials 

For  https://doi.org/10.1631/jzus.A2200447 

 

Square cavity flow driven by two mutually facing sliding 

walls  

 

Bo AN
1,2,3

, Josep M. BERGADÀ
4
, Weimin SANG

1
, Dong LI

1
, F. MELLIBOVSKY

5
 

 

1School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China 

2National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Xi’an 710072, China 

3Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, China 

4Department of Fluid Mechanics, Universitat Politécnica de Catalunya, Barcelona 08034, Spain 

5Department of Physics, Aerospace Engineering Division, Universitat Politécnica de Catalunya, Barcelona 08034, Spain 

 

S1. Validation 

Since the present work is an extension from our previous studies [1-2], we will directly use previous 

data for the validation purpose in the supplementary material.  

[1] B. AN, J.M. Bergada, and F. Mellibovsky, “The lid-driven right-angled isosceles triangular cavity flow,” Journal of Fluid 

Mechanics. 875, 476-519. (2019). 

[2] B. AN, F. Mellibovsky, J.M. Bergada, and W.M. Sang, “Towards a better understanding of wall-driven square cavity  

flows using the Lattice Boltzmann method,” Applied Mathematical Modelling. 875, 476-519. (2020). 

S1.1 Validation for the lid-driven cavity: 

 

Table S1 Comparison of computational results between the results based on the present study and other results at steady 

Reynolds numbers 1000 and 5000 

Re Positions Ghia [31] Rohde [32] Shi [33] Hou [34] Erturk [35] Present study 

 

 

 

 

 

 

1000 

Down-left 

Secondary 

vortex 

X=0.0859 

Y=0.0781 

42.3113 10  

0.36175   

X=0.0807 

Y=0.0759 

-- 

-- 

X=0.0830 

Y=0.0775 

-- 

-- 

X=0.0902 

Y=0.0784 

42.22 10    

-- 

X=0.0833 

Y=0.0783 

42.335 10  

0.35427   

X=0.0831 

Y=0.0778 

42.284 10  

0.3462   

Down-righ

t 

Secondary 

vortex 

X=0.8594 

Y=0.1094 

31.751 10    

1.15465   

X=0.8665 

Y=0.1122 

-- 

-- 

X=0.8650 

Y=0.1130 

-- 

-- 

X=0.8667 

Y=0.1137 

41.69 10    

-- 

X=0.8642 

Y=0.1120 

41.73 10    

1.11822   

X=0.8642 

Y=0.1120 

41.732 10  

1.0921   

 

Primary 

vortex 

X=0.5313 

Y=0.5625 

0.11793    

2.04968    

X=0.5321 

Y=0.5676 

-- 

-- 

X=0.5315 

Y=0.5660 

-- 

-- 

X=0.5333 

Y=0.5647 

0.1178    

2.076    

X=0.5300 

Y=0.5650 

0.11894    

2.0677    

X=0.5311 

Y=0.5666 

0.11843  

2.0672    

Re Positions Ghia [31] Vanka [36] Das [37] Hou [34] Erturk [35] Present study 

 Down-left X=0.0703 X=0.0625 X=0.0736 X=0.0784 X=0.0733 X=0.0732 



 

 

 

 

5000 

Secondary 

vortex 

Y=0.1367 

31.3612 10  

1.5306    

Y=0.1563 

-- 

-- 

Y=0.1386 

31.373 10  

-- 

Y=0.1373 

31.35 10    

-- 

Y=0.1367 

31.3758 10    

1.5143    

Y=0.1365 

-31.383 10  

1.521    

Down-righ

t 

Secondary 

vortex  

X=0.8086 

Y=0.0742 

33.0836 10  

2.66354    

X=0.8500 

Y=0.0813 

-- 

-- 

X=0.8017 

Y=0.0722 

33.123 10  

-- 

X=0.8078 

Y=0.0745 

33.03 10    

-- 

X=0.8050 

Y=0.0733 

33.073 10    

2.739    

X=0.8051 

Y=0.0731 

-33.089 10  

2.743    

 

Primary 

vortex 

X=0.5117 

Y=0.5352 

0.11897    

1.86016   

X=0.5125 

Y=0.5313 

-- 

-- 

X=0.5154 

Y=0.5399 

0.1212    

-- 

X=0.5156 

Y=0.5373 

0.1214    

-- 

X=0.5150 

Y=0.5350 

0.12222    

1.9405   

X=0.5153 

Y=0.5352 

0.1198    

1.924   

 

Table S1 introduces the positions of vortices centre and the corresponding values of stream function 

 and vorticity  on the vortex centres, at steady Reynolds numbers 1000 and 5000. 

 

             

                  (a)                                                  (b)        

Fig. S1 Normalized velocity profiles: (a) Horizontal velocity component along the vertical axis. (b) Vertical velocity 

component along the horizontal axis. (Re = 1000) 

Figure S1 introduces the comparison of the normalized velocity profiles 
xu and yu among the 

present study and the corresponding data presented from references [31-37], where 
x x lidu u U  and 

y y lidu u U  are defined as the normalized velocity profiles. It is observed that present methodology 

has a good performance on predicting the steady state at Reynolds number 1000. 

At a steady Reynolds number 1000, Table S2 provides a further quantification of the accuracy by 

measuring the relative error of xu at the cavity central point with respect to the highest resolution used. 

It is realised that the relative error is very small whenever resolutions are higher than 200 200 . The 

relative error was calculated when comparing any resolution results to the ones obtained with a 

resolution of 512 512 . Based on this study, it is observed that using resolutions higher than 

300 300  at Reynolds 1000 produce very accurate results. Table S3 shows the critical Reynolds 

number Hopf bifurcation obtained by using present method and other studies. 

 

Table S2. Relative error of different grid spacing over the minimum grid spacing ( 512 512 ) at Reynolds number 1000 

Resolution 50,50 100,100 200,200 300,300 400,400 512,512 



Relative error 0.3912 0.224 0.007687 0.003638 0.001324 0.0 

 

Table S3. Critical Reynolds number of Hopf bifurcation 

Resolution Present 

LBM 

Ref 

[30-35] 

Ref [42] Ref [43] Ref [44] Ref [45] 

HRe  8025 25  8000 8018.2 0.6  8026.7  8025.9  8051  
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for lattice Boltzmann schemes,” International journal for numerical methods in fluids, 51, 439-468. (2006) 
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Boltzmann method for viscous flows,” International Journal for Numerical Method, 230, 6, 2246-2269. (2011) 

[34]  S. Hou,  Q. Zou, S. Chen, G. Doolen, and A.C. Cogley, “Simulation of cavity flow by the lattice Boltzmann method,” 

Journal of Computational Physics, 118, 2, 329-347. (1995) 
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Methods in Fluids. 62, 827-853. (2010) 
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flows,” Applied Mathematical Modelling. 40, 6831-6849. (2016) 

[45]   A.N. Nuriev, A.G. Egorov and O.N. Zaitseva, “Bifurcation analysis of steady-state flows in the lid-driven cavity,” Fluid 

Dynamics Research. 48, 061405. (2016) 

 

S1.2 Validation for two-sided wall-driven cavity (same code): 

In order to further check the performance of the LBM approach used, the velocity profiles along the 

vertical central line, at 0.5x  , and the horizontal central line, at 0.75y  , are presented in figure 1. 

The comparison between the numerical predictions calculated in the present paper and the data from 

reference [21] is also made to validate the feasibility of LBM model at Reynolds number 1000. It can 

be seen that the agreement is very good. 

 

 

              (a) Parallel wall motion                            (b) Anti-parallel wall motion 



Fig. S2. Comparison of the velocity profiles between the computed results from the present paper, cases S2p and S2a, and 

the data from reference [21], Re =1000 

Figure S2 shows several computational results, see Fig. S2, when using different grid resolutions. It 

is observed that, for the Reynolds number evaluated, Re=1000, the grid resolution between 200 200  

and 300 300  produces very accurate results. Notice that, in each figure right hand side, the zoomed 

view of the curve main discrepancy area is presented. 

          

                 (a) Parallel wall motion                            (b) Anti-parallel wall motion 

Fig. S3. Grid independency test of two-wall driven cavity at Re =1000. Each figure shows the zoomed zone where the 

small disagreement is spotted 

 

Table S4 Frequencies of time series of
xu with different resolutions for parallel wall motion at Reynolds number 9900 

Resolution 100,100 200,200 300,300 512,512 800,800 1024,1024 

Frequency steady steady steady 1.415658 1.423 1.44095 

 

Table S4 shows the frequencies of a periodic solution based on different resolutions, ranging from 

100 to 1024. It is observed that as the Reynolds number increases, the mesh needs to be refined to 

obtain trustable results. 

[21] S. Arun, and A. Satheesh, “Analysis of flow behavior in a two sided lid driven cavity using lattice Boltzmann technique,” 

Alexandaria Engineering Journal. 54, 4, 795-806. (2015) 

S1.3 Validation for lid-driven right-angled isosceles triangular cavity (same code): 



 

Fig. S4 Comparison between the result obtained by using present methodology and other peoples’ work. Lid-driven 

right-angled isosceles triangular cavity 

  

S2 Nomenclature 

Nomenclature (all parameters are non-dimensional) 

c    Lattice speed of LBM 

f    Frequency 

L    Square cavity side (characteristic length) 

xL    Square size in x direction 

yL    Square size in y direction 

M    Mach number 

xM    Mirror symmetry with respect to the horizontal mid-plane 

yM    Mirror symmetry with respect to the vertical mid-plane 

xN    Mesh size in x direction 



yN    Mesh size in y direction 

p    Pressure 

r    Position vector 

Re    Bulk Reynolds number 

TRe    Top wall Reynolds number  

BRe    Bottom wall Reynolds number 

T    Period of periodic solutions 

t    Time 

ct    Advective time scale 

u    Velocity vector 

ˆ
xu    Spectral power density 

U    Bulk velocity 

TU        Velocity of the top wall 

BU         Velocity of the bottom wall 

xu           Horizontal component of velocity 

yu           Vertical component of velocity  

    Top-bottom driving-velocities asymmetry parameter 

    Fluid density 

    Fluid kinematic viscosity 

x    Grid spacing 

t    Time step 

    Relaxation term 

    -rotational symmetry 

 

S3. Equation (S1) 

The two-opposing-walls driven square cavity flow problem is invariant under the following 

symmetry operations 

T B T B

T B B T

T B B T

[ , , ]( , ,  ; , ) [ , , ]( , ,  ; , ),

[ , , ]( , ,  ; , ) [ , , ]( , ,  ; , ),

[ , , ]( , ,  ; , ) [ , , ]( , ,  ; , ).

y

x

M u v p x y t Re Re u v p x y t Re Re

M u v p x y t Re Re u v p x y t Re Re

u v p x y t Re Re u v p x y t Re Re

    

  

       

                   (S1) 



As a matter of fact, the composition of any two of the symmetries yields the third symmetry. Notice 

that yM leaves the problem invariant under the change of sign of both top and bottom velocities, 

followed by a mirror reflection about the vertical mid-plane ( 0x  ). Meanwhile,
xM  consists in the 

exchange of top and bottom lid velocities followed by a mirror reflection about the horizontal 

mid-plane ( 0y  ). Finally, both exchanging and inverting the sign of top and bottom lid velocities 

requires a -rotation  of the flow field to preserve invariance, as specified by symmetry parameter 

 . 

 


