Electronic supplementary materials

For https://doi.org/10.1631/jzus.A2200447

Square cavity flow driven by two mutually facing sliding walls

Bo AN^{1,2,3}, Josep M. BERGADÀ⁴, Weimin SANG¹, Dong LI¹, F. MELLIBOVSKY⁵

¹School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

²National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Xi'an 710072, China ³Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, China ⁴Department of Fluid Mechanics, Universitat Polit écnica de Catalunya, Barcelona 08034, Spain ⁵Department of Physics, Aerospace Engineering Division, Universitat Polit écnica de Catalunya, Barcelona 08034, Spain

S1. Validation

Since the present work is an extension from our previous studies [1-2], we will directly use previous data for the validation purpose in the supplementary material.

- B. AN, J.M. Bergada, and F. Mellibovsky, "The lid-driven right-angled isosceles triangular cavity flow," Journal of Fluid Mechanics. 875, 476-519. (2019).
- [2] B. AN, F. Mellibovsky, J.M. Bergada, and W.M. Sang, "Towards a better understanding of wall-driven square cavity flows using the Lattice Boltzmann method," Applied Mathematical Modelling. 875, 476-519. (2020).

S1.1 Validation for the lid-driven cavity:

Table S1 Comparison of computational results between the results based on the present study and other results at steady Reynolds numbers 1000 and 5000

Re	Positions	Ghia [31]	Rohde [32]	Shi [33]	Hou [34]	Erturk [35]	Present study
	Down-left	X=0.0859	X=0.0807	X=0.0830	X=0.0902	X=0.0833	X=0.0831
	Secondary	<i>Y</i> =0.0781	<i>Y</i> =0.0759	<i>Y</i> =0.0775	<i>Y</i> =0.0784	<i>Y</i> =0.0783	<i>Y</i> =0.0778
	vortex	$\psi = 2.3113 \times 10^{-4}$			$\psi = 2.22 \times 10^{-4}$	$\psi = 2.335 \times 10^{-4}$	$\psi = 2.284 \times 10^{-4}$
		$\omega = 0.36175$				$\omega = 0.35427$	$\omega = 0.3462$
	Down-righ	X=0.8594	X=0.8665	X=0.8650	<i>X</i> =0.8667	<i>X</i> =0.8642	X=0.8642
	t	<i>Y</i> =0.1094	<i>Y</i> =0.1122	<i>Y</i> =0.1130	<i>Y</i> =0.1137	<i>Y</i> =0.1120	<i>Y</i> =0.1120
1000	Secondary	$\psi = 1.751 \times 10^{-3}$			$\psi = 1.69 \times 10^{-4}$	$\psi = 1.73 \times 10^{-4}$	$\psi = 1.732 \times 10^{-4}$
	vortex	$\omega = 1.15465$				ω=1.11822	ω=1.0921
		X=0.5313	X=0.5321	X=0.5315	X=0.5333	X=0.5300	X=0.5311
	Primary	<i>Y</i> =0.5625	<i>Y</i> =0.5676	<i>Y</i> =0.5660	<i>Y</i> =0.5647	<i>Y</i> =0.5650	<i>Y</i> =0.5666
	vortex	$\psi = -0.11793$			$\psi = -0.1178$	$\psi = -0.11894$	$\psi = -0.11843$
		$\omega = -2.04968$			$\omega = -2.076$	$\omega = -2.0677$	$\omega = -2.0672$
Re	Positions	Ghia [31]	Vanka [36]	Das [37]	Hou [34]	Erturk [35]	Present study
	Down-left	X=0.0703	X=0.0625	X=0.0736	X=0.0784	<i>X</i> =0.0733	X=0.0732

	Secondary	<i>Y</i> =0.1367	Y=0.1563	<i>Y</i> =0.1386	<i>Y</i> =0.1373	<i>Y</i> =0.1367	<i>Y</i> =0.1365
	vortex	$\psi = 1.3612 \times 10^{-3}$		$\psi = 1.373 \times 10^{-3}$	$\psi = 1.35 \times 10^{-3}$	$\psi = 1.3758 \times 10^{-3}$	$\psi = 1.383 \times 10^{-3}$
		$\omega = -1.5306$				$\omega = -1.5143$	$\omega = -1.521$
	Down-righ	X=0.8086	X=0.8500	X=0.8017	X=0.8078	X=0.8050	X=0.8051
5000	t	<i>Y</i> =0.0742	<i>Y</i> =0.0813	<i>Y</i> =0.0722	<i>Y</i> =0.0745	<i>Y</i> =0.0733	<i>Y</i> =0.0731
	Secondary	$\psi = 3.0836 \times 10^{-3}$		$\psi = 3.123 \times 10^{-3}$	$\psi = 3.03 \times 10^{-3}$	$\psi = 3.073 \times 10^{-3}$	$\psi = 3.089 \times 10^{-3}$
	vortex	$\omega = -2.66354$				$\omega = -2.739$	$\omega = -2.743$
		X=0.5117	X=0.5125	X=0.5154	X=0.5156	X=0.5150	X=0.5153
	Primary	<i>Y</i> =0.5352	<i>Y</i> =0.5313	<i>Y</i> =0.5399	<i>Y</i> =0.5373	<i>Y</i> =0.5350	<i>Y</i> =0.5352
	vortex	$\psi = -0.11897$		$\psi = -0.1212$	$\psi = -0.1214$	$\psi = -0.12222$	$\psi = -0.1198$
		ω=1.86016				<i>ω</i> =1.9405	ω=1.924

Table S1 introduces the positions of vortices centre and the corresponding values of stream function ψ and vorticity ω on the vortex centres, at steady Reynolds numbers 1000 and 5000.

Fig. S1 Normalized velocity profiles: (a) Horizontal velocity component along the vertical axis. (b) Vertical velocity component along the horizontal axis. (Re = 1000)

Figure S1 introduces the comparison of the normalized velocity profiles u'_x and u'_y among the present study and the corresponding data presented from references [31-37], where $u'_x = u_x/U_{lid}$ and $u'_y = u_y/U_{lid}$ are defined as the normalized velocity profiles. It is observed that present methodology has a good performance on predicting the steady state at Reynolds number 1000.

At a steady Reynolds number 1000, Table S2 provides a further quantification of the accuracy by measuring the relative error of u_x at the cavity central point with respect to the highest resolution used. It is realised that the relative error is very small whenever resolutions are higher than 200×200 . The relative error was calculated when comparing any resolution results to the ones obtained with a resolution of 512×512 . Based on this study, it is observed that using resolutions higher than 300×300 at Reynolds 1000 produce very accurate results. Table S3 shows the critical Reynolds number Hopf bifurcation obtained by using present method and other studies.

Table S2. Relative error of different grid spacing over the minimum grid spacing (512×512) at Reynolds number 1000

Resolution	50,50	100,100	200,200	300,300	400,400	512,512
------------	-------	---------	---------	---------	---------	---------

Relative error	0.3912	0.224	0.007687	0.003638	0.001324	0.0

	1 abit 55. C	Thucar Keyl	ionus number or	Hopi bitur	auon	
Resolution	Present	Ref	Ref [42]	Ref [43]	Ref [44]	Ref [45]
	LBM	[30-35]				
Re ^H	8025 ± 25	8000	8018.2 ± 0.6	8026.7	8025.9	8051
Ren	8025±25	8000	8018.2±0.6	8026.7	8025.9	80

Table S3. Critical Reynolds number of Hopf bifurcation

- [31] U. Ghia, K.N. Ghia, C.T. Shin, "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method," Journal of Computational Physics, 48, 3, 387-411. (1982)
- [32] M. Rohde, D. Kandhai, J.J. Derksen, and E.A. van den Akker, "A generic, mass conservative local grid refinement technique for lattice Boltzmann schemes," International journal for numerical methods in fluids, 51, 439-468. (2006)
- [33] X. Shi, X. Huang, Y. Zheng, and T. Ji, "A hybrid algorithm of lattice Boltzmann method and finite difference-based lattice Boltzmann method for viscous flows," International Journal for Numerical Method, 230, 6, 2246-2269. (2011)
- [34] S. Hou, Q. Zou, S. Chen, G. Doolen, and A.C. Cogley, "Simulation of cavity flow by the lattice Boltzmann method," Journal of Computational Physics, 118, 2, 329-347. (1995)
- [35] E. Erturk, and C. Gök çöl, "Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers," International Journal for Numerical Methods in Fluids, 50, 4, 421-436. (2005)
- [36] S. Vanka, "Block implicit multigrid solution of Navier-Stokes equations in primitive variables," Journal of Computational Physics, 65, 1, 138-158. (1986)
- [37] M.K. Das, and P. Rajesh Kanna, "Application of an ADI scheme for steady and periodic solutions in a lid-driven cavity problem," International Journal of Numerical Methods for Heat & Fluid Flow, 17, 8, 799-822. (2007)
- [42] F. Auteri, N. Parolini, and L. Quartapelle, "Numerical investigation on the stability of singular driven cavity flow," Journal of Computational Physics. 183, 1-25. (2002)
- [43] V.B.L. Boppana, and J.S.B. Gajjar, "Global flow instability in a lid-driven cavity," International Journal for Numerical Methods in Fluids. 62, 827-853. (2010)
- [44] J.C. Kalita, and B.B. Gogoi, "A biharmonic approach for the global stability analysis of 2D incompressible viscous flows," Applied Mathematical Modelling. 40, 6831-6849. (2016)
- [45] A.N. Nuriev, A.G. Egorov and O.N. Zaitseva, "Bifurcation analysis of steady-state flows in the lid-driven cavity," Fluid Dynamics Research. 48, 061405. (2016)

S1.2 Validation for two-sided wall-driven cavity (same code):

In order to further check the performance of the LBM approach used, the velocity profiles along the vertical central line, at x = 0.5, and the horizontal central line, at y = 0.75, are presented in figure 1. The comparison between the numerical predictions calculated in the present paper and the data from reference [21] is also made to validate the feasibility of LBM model at Reynolds number 1000. It can be seen that the agreement is very good.

(a) Parallel wall motion

(b) Anti-parallel wall motion

Fig. S2. Comparison of the velocity profiles between the computed results from the present paper, cases *S2p* and *S2a*, and the data from reference [21], *Re* =1000

Figure S2 shows several computational results, see Fig. S2, when using different grid resolutions. It is observed that, for the Reynolds number evaluated, Re=1000, the grid resolution between 200×200 and 300×300 produces very accurate results. Notice that, in each figure right hand side, the zoomed view of the curve main discrepancy area is presented.

Fig. S3. Grid independency test of two-wall driven cavity at Re = 1000. Each figure shows the zoomed zone where the small disagreement is spotted

Table S4 Frequencies of time series of u, with different resolutions for parallel wall motion at Reynolds number 9900

Resolution	100,100	200,200	300,300	512,512	800,800	1024,1024
Frequency	steady	steady	steady	1.415658	1.423	1.44095

Table S4 shows the frequencies of a periodic solution based on different resolutions, ranging from 100 to 1024. It is observed that as the Reynolds number increases, the mesh needs to be refined to obtain trustable results.

[21] S. Arun, and A. Satheesh, "Analysis of flow behavior in a two sided lid driven cavity using lattice Boltzmann technique," Alexandaria Engineering Journal. 54, 4, 795-806. (2015)

S1.3 Validation for lid-driven right-angled isosceles triangular cavity (same code):

Ref/Meth/Res	Prop.	Primary	Bottom left	Bottom right
Ghia <i>et al.</i> (1982) 2nd-order FD 257 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.117929 -2.04968 0.5313 0.5625	$\begin{array}{c} 2.31129 \times 10^{-4} \\ 0.36175 \\ 0.0859 \\ 0.0781 \end{array}$	$\begin{array}{c} 1.75102 \times 10^{-3} \\ 1.15465 \\ 0.8594 \\ 0.1094 \end{array}$
Botella & Peyret (1998) Spectral 160 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.1189366 -2.067753 0.5308 0.5652	$\begin{array}{c} 2.334528 \times 10^{-4} \\ 0.3522861 \\ 0.0833 \\ 0.0781 \end{array}$	$\begin{array}{c} 1.729717 \times 10^{-3} \\ 1.109789 \\ 0.8640 \\ 0.1118 \end{array}$
Marchi <i>et al.</i> (2009) 2nd-order FVM 1024 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.118936708 	 	
Erturk & Gokcol (2006) 4th-order FD 601 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.118938 -2.067760 0.5300 0.5650	$\begin{array}{c} 2.3345 \times 10^{-4} \\ 0.354271 \\ 0.0833 \\ 0.0783 \end{array}$	$\begin{array}{c} 1.7297 \times 10^{-3} \\ 1.118222 \\ 0.8633 \\ 0.1117 \end{array}$
Bruneau & Saad (2006) 2nd-order FD 1024 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.11892 -2.0674 0.53125 0.56543	 	$\begin{array}{c} 1.7292 \times 10^{-3} \\ 1.1120 \\ 0.86426 \\ 0.11230 \end{array}$
Hou <i>et al.</i> (1995) LBM 513 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.1178 -2.076 0.5333 0.5647	2.22×10^{-4} 0.0902 0.0784	1.69×10^{-3} 0.8667 0.1137
Present work LBM 301 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.11664 -2.02059 0.53180 0.56567	$\begin{array}{c} 2.2333 \times 10^{-4} \\ 0.32902 \\ 0.08199 \\ 0.07815 \end{array}$	$\begin{array}{c} 1.6520 \times 10^{-3} \\ 1.0572 \\ 0.86436 \\ 0.11236 \end{array}$
Present work LBM 601 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.11773 -2.04311 0.53141 0.56539	$\begin{array}{c} 2.2882 \times 10^{-4} \\ 0.33988 \\ 0.08262 \\ 0.07815 \end{array}$	$\begin{array}{c} 1.6882 \times 10^{-3} \\ 1.0813 \\ 0.86427 \\ 0.11211 \end{array}$
Present work LBM 1001 ²	$\psi_{vc} \ \omega_{vc} \ x_{vc} \ y_{vc}$	-0.11815 -2.05210 0.53125 0.56534	$\begin{array}{c} 2.3065 \times 10^{-4} \\ 0.34368 \\ 0.08284 \\ 0.07814 \end{array}$	$\begin{array}{c} 1.7021 \times 10^{-3} \\ 1.0902 \\ 0.86419 \\ 0.11204 \end{array}$

Fig. S4 Comparison between the result obtained by using present methodology and other peoples' work. Lid-driven right-angled isosceles triangular cavity

S2 Nomenclature

Nomenclature	Nomenclature (all parameters are non-dimensional)					
С	Lattice speed of LBM					
f	Frequency					
L	Square cavity side (characteristic length)					
L_x	Square size in x direction					
L_y	Square size in <i>y</i> direction					
М	Mach number					
M_{x}	Mirror symmetry with respect to the horizontal mid-plane					
M_{y}	Mirror symmetry with respect to the vertical mid-plane					
N_x	Mesh size in x direction					

N_y	Mesh size in y direction
р	Pressure
r	Position vector
Re	Bulk Reynolds number
Re _T	Top wall Reynolds number
Re _B	Bottom wall Reynolds number
Т	Period of periodic solutions
t	Time
t _c	Advective time scale
u	Velocity vector
$ \hat{u}_x $	Spectral power density
U	Bulk velocity
U_{T}	Velocity of the top wall
$U_{ m B}$	Velocity of the bottom wall
<i>u</i> _x	Horizontal component of velocity
u _y	Vertical component of velocity
α	Top-bottom driving-velocities asymmetry parameter
ρ	Fluid density
V	Fluid kinematic viscosity
Δx	Grid spacing
Δt	Time step
τ	Relaxation term
\mathfrak{R}_{π}	π -rotational symmetry

S3. Equation (S1)

The two-opposing-walls driven square cavity flow problem is invariant under the following symmetry operations

$$M_{y}[u,v,p](x,y,t;Re_{T},Re_{B}) = [-u,v,p](-x,y,t;-Re_{T},-Re_{B}),$$

$$M_{x}[u,v,p](x,y,t;Re_{T},Re_{B}) = [u,-v,p](x,-y,t;Re_{B},Re_{T}),$$

$$\Re_{\pi}[u,v,p](x,y,t;Re_{T},Re_{B}) = [-u,-v,p](-x,-y,t;-Re_{B},-Re_{T}).$$
(S1)

As a matter of fact, the composition of any two of the symmetries yields the third symmetry. Notice that M_y leaves the problem invariant under the change of sign of both top and bottom velocities, followed by a mirror reflection about the vertical mid-plane (x = 0). Meanwhile, M_x consists in the exchange of top and bottom lid velocities followed by a mirror reflection about the horizontal mid-plane (y = 0). Finally, both exchanging and inverting the sign of top and bottom lid velocities requires a π -rotation of the flow field to preserve invariance, as specified by symmetry parameter \Re_{π} .