
 

 

Electronic supplementary materials 
For: https://doi.org/10.1631/jzus.A2200551 

 

 

Experimental and theoretical analysis of a hybrid vibration 

energy harvester with integrated piezoelectric and 

electromagnetic interaction 
 

Shifan HUANG, Weihao LUO, Zongming ZHU, Zhenlong XU, Ban WANG, Maoying ZHOU, 
Huawei QIN 

 
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China 

 

S1  Lumped-parameter model of the HEHPE 

For the sake of theoretical analysis, equivalent lumped-parameter representations of the 

studied HEHPE are established and shown in Fig. S1. The four connection topologies shown in 

Fig. S2 in the main manuscript are represented in Figs. S1a–1d, respectively. Some simplifications 

have been made in this process. Firstly, the base excitation is thought to be small and thus seen as 

infinitesimal in the theoretical analysis. In this sense, the piezoelectric beam model is readily 

linearized. Secondly, the electromechanical resonance, electrical resonance, and mechanical 

resonance in the HEHPE are thought to be isolated from each other. As a result, we can describe 

the three parts separately in the theoretical model, without loss essence of the problem. Thirdly but 

not the least important, the attached electromagnetic part to the free end of the piezoelectric part is 

assumed to be rigid and the connection between them is assumed perfect without damping. 
Since the studied HEHPE is intended for low-frequency applications, only the first-order 

reduced order model of the piezoelectric part is considered here. In Fig. S1, , , and  

are the equivalent mechanical damping, equivalent stiffness and equivalent mass of the 

piezoelectric part respectively. , , and  are the equivalent mechanical damping, 

equivalent electromagnetic damping and equivalent mass of the electromagnetic part respectively. 

 is the nonlinear magnetic force applied to the moving magnet by the two fixed magnets. 

 and  are the deflection of the piezoelectric cantilever beam and the displacement of the 

moving magnet respectively.  is the voltage across the piezoelectric plates in the piezoelectric 



 

 

cantilever beam.  is the induced current in the induction coil, and  is the current passing 

through the resistance load  when the piezoelectric part and the electromagnetic part are 

electrically connected in serial.  is the excitation acceleration with A being the 

amplitude and w being the angular frequency. 

As shown in Fig. S1a, the HEHPE with connection topology 1 corresponds to classical 

piezoelectric energy harvesters with end mass. With this in mind, lumped-parameter model of the 

HEHPE in connection topology 1 is listed as follows: 

  (S1) 

where  is the electromechanical coupling coefficient of the piezoelectric part,  is the 

equivalent capacitance of the piezoelectric part, and over dots represent the derivatives with 

respect to time. 
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When it comes to connection topology 3, as shown in Fig. S1c, the external resistances  

and  are independent upon each other, and the lumped-parameter model is 

  (S3) 

It should be noted that, according to the classical electromagnetic theory, voltage across the 

induction coil can be expressed as (Nguyen et al., 2020.)  

 . (S4) 

Here, , , , and  are the number of turns, diameter, thickness and internal resistance 

of the induction coil, respectively. 

As shown in Fig. S1d, the connection topology 4 takes into account the electrically serial 

connection between the piezoelectric part and electromagnetic part. Considering an external load 

resistance of , the following lumped-parameter model is formulated: 

  (S5) 

where  denotes the current flowing through the external resistance , and is the 

electromechanical coupling coefficient for the electromagnetic part. Further,  can be obtained 

using the Wheeler formula (Wheeler et al., 1928) 
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where 0( ) 2mD D d    is the average diameter of the coil. 

S1.1  Magnetic force and the electromagnetic damping 

To explicitly describe the magnetic force Fmag in the system, schematic diagram of 

electromagnetic part is shown in Fig. S2 (a) with dimensions explicitly designated. According to 

the Taylor expansion approximation by Nguyen et al., 2020 the magnetic force  is expressed 



 

 

with respect to the displacement y of the moving magnet as 

  (S7) 

where and  are the linear and nonlinear coefficients of magnetic force respectively, and their 

expressions are as follows: 

  (S8) 

 (S9) 

where is the residual magnetic flux densities of the upper and lower fixed magnets,  and 

 are the height and the distance between the upper and lower fixed magnets respectively.  

and are the residual magnetic flux density and volume of the moving magnet, respectively. 

And , where  and are the outer diameter and inner diameter of the 

ring magnet respectively.  is the magnetic permeability of a vacuum. 

A series of computational analyses are also done to investigate the variation of magnetic 

forces, as shown in Fig. S2 (b). The computationally obtained relations between magnetic force 

 and relative displacement  of the moving magnet is compared with the analytical 

formulations used above and plotted in Fig. S2 (c). It can be concluded that for a small relative 

displacement  ≤ 10 mm, the analytical formulations show high accuracy of approximation. 

Next, the influence of the distance H between the upper and lower fixed magnets upon 

magnetic force  is computationally analyzed and the results are shown in Fig. S2 (d). It can 

be found that with the increase of , the nonlinear dependence of  upon  becomes 

weaker in the considered range  ≤ 30 mm. That is to say,  tends to be approximately 

proportional to . 
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  (S13) 

Where , , , and  are dimensionless piezoelectric deflection, dimensionless 

displacement of the moving magnet, dimensionless voltage, and dimensionless time, respectively. 

 is the length scale, which is taken as the thickness of the fixed ring magnet.  is the natural 

frequency, which is taken as the first-order natural frequency of the piezoelectric cantilever beam. 

 is the electromechanical coupling coefficient of the piezoelectric part of the HEHPE.  is the 

equivalent capacitance of piezoelectric ceramic plates. 

Using the above dimensionless scheme (S13), governing equations of the studied HEHPE in 

connection topology 1 is reformulated into: 

  (S14) 

Where damping ratio , and . 

The equations for connection topology 2 is then changed into: 

  (S15) 

The equations for connection topology 3 is converted into the form 

  (S16) 

The equations for connection topology 4 leads to 

  (S17) 
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acceleration of the vibration exciter. To this end, input signal to the vibration exciter is set to be of 

sinusoidal waveform at the frequency of 6 Hz, output vibration acceleration of the base is then 

recorded using an acceleration sensor and plotted in Fig. S4 (c) with corresponding frequency 

spectrum shown in Fig. S4 (d). It is obviously shown that though of relatively small amplitude, the 

output signal of the vibration exciter is not of single frequency component. The higher frequency 

components of the excited acceleration signal can not be neglected. In fact, the output vibration 

signals contain frequency components of 5.968 Hz and 11.94 Hz together. Note that these values 

do not strictly correspond to the frequency 6 Hz given by the signal generator. This may be caused 

by system error and can be ignored in our situation. 

Therefore, both the input and output of the studied HEHPE contain multifrequency 

components. This feature brings into question the usual method of characterization of the output 

performance of the studied HEHPE. In fact, it is currently widely adopted that the output 

performance of an energy harvester, say, amplitude of output voltage, is plotted against base 

excitation frequency, whose trend is checked to extract the resonant frequency and maximized 

output voltage. Two points are to be concerned. Firstly, due to the multi-frequency nature, the 

“amplitude” measuring the difference between the maximum value and minimum value of the 

output signal is not an appropriate indicator. Secondly, in the frequency amplitude plot, each point 

should corresponding to a single frequency component. Therefore, in the treatment of 

experimental results, we have to take care of the frequency components of the output signal before 

resorting to any data processing and performance evaluation. 

With an acceleration amplitude of 0.2 g, a base excitation of 6.4 Hz is applied to the HEHPE 

in connection topology 3. The resulting time-history output voltage from the piezoelectric part is 

shown in Fig. S5 (a). Obviously, the signal contains high frequency noise, which can be filtered 

and leads to the signal shown in Fig. S5 (b) with blue hollow circles. Frequency spectrum of the 

filtered signal is shown in Fig. S5 (c), from which we can easily identified many higher-order 

harmonics, though the calculated base frequency is around 6.452 Hz, instead of exactly 6.4 Hz. 
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signals, we correspond the amplitudes of the same order of harmonics in the fitted input and 

output signals. They ratios between the output and input amplitudes are then plotted against 

frequency of the underlying harmonics, as shown in Fig. S7. The results in terms of four 

connection topologies are simultaneously shown. As a comparison, the results which contain only 

the first harmonic are also shown. 

It is clearly shown in Fig. S7 that in the low frequency range (  smaller than 12 Hz or so), 

the curve for the second harmonic coincides with that for the first-order harmonics. In the 

meantime, for the relatively high frequency range (  greater than 12 Hz or so), the two curves 

deviate from each other. This phenomenon partly validate our assumption of quasi-linearity. Also, 

it indicates that nonlinearity in the system begins to come into play when base excitation 

frequency surpasses a certain limit. From a practical perspective of view, extraction of 

higher-order harmonics is useful in the investigation of dynamical behavior of the system. 
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