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S1 Lumped-parameter model of the HEHPE

For the sake of theoretical analysis, equivalent lumped-parameter representations of the
studied HEHPE are established and shown in Fig. S1. The four connection topologies shown in
Fig. S2 in the main manuscript are represented in Figs. Sla—1d, respectively. Some simplifications
have been made in this process. Firstly, the base excitation is thought to be small and thus seen as
infinitesimal in the theoretical analysis. In this sense, the piezoelectric beam model is readily
linearized. Secondly, the electromechanical resonance, electrical resonance, and mechanical
resonance in the HEHPE are thought to be isolated from each other. As a result, we can describe
the three parts separately in the theoretical model, without loss essence of the problem. Thirdly but
not the least important, the attached electromagnetic part to the free end of the piezoelectric part is

assumed to be rigid and the connection between them is assumed perfect without damping.
Since the studied HEHPE is intended for low-frequency applications, only the first-order

reduced order model of the piezoelectric part is considered here. In Fig. S1, C,,, K, and M,,

are the equivalent mechanical damping, equivalent stiffness and equivalent mass of the

piezoelectric part respectively. C,, C., and m,. are the equivalent mechanical damping,

equivalent electromagnetic damping and equivalent mass of the electromagnetic part respectively.

F,., is the nonlinear magnetic force applied to the moving magnet by the two fixed magnets.
z(t) and y(t) are the deflection of the piezoelectric cantilever beam and the displacement of the

moving magnet respectively. V,, is the voltage across the piezoelectric plates in the piezoelectric



cantilever beam. i, is the induced current in the induction coil, and ¢ is the current passing
through the resistance load R,.. when the piezoelectric part and the electromagnetic part are
electrically connected in serial. Asin(wt) is the excitation acceleration with 4 being the

amplitude and w being the angular frequency.
As shown in Fig. Sla, the HEHPE with connection topology 1 corresponds to classical
piezoelectric energy harvesters with end mass. With this in mind, lumped-parameter model of the

HEHPE in connection topology 1 is listed as follows:
M i+ C, 2+ Kz + 60V, =~ M, Asin (wt)

v, (S1)

c,V,+ oR, —0z=0

where 6 is the electromechanical coupling coefficient of the piezoelectric part, C, is the
equivalent capacitance of the piezoelectric part, and over dots represent the derivatives with

respect to time.



(a) (b)

i T y®)
|
My I z(t) c, LI P,

J= M T z(t)

Ch L K Evp Ry |

c,L K gvpl \RPI
Asin(wt) Asin(wt)
LIS LLSS LTS

€ . = (d)

s R =i, =i,

[ —— |

: Cl e m, % v
L‘ 0

: Me
Cd+Ce LJ Fmag % Cd+Ce |——l Fmag [] Rload
Mes

I z(t) - My Iz(t)

le—J K I_va ‘ Rp Cm+ K gvp
IAsin(wt) IAsin(wt)
/

S S S

Fig. S1 Lumped-parameter representations of the studied HEHPE: (a) connection topology

1, (b) connection topology 2, (¢) connection topology 3, and (d) connection topology 4

As for the HEHPE with connection topology 2, as shown in Fig. S1b, it can be treated as a
nonlinear magnetic oscillator connected to the free end of the piezoelectric cantilever beam. The

resulting lumped-parameter model is

M2+C,2+ Kz 40V, —F,,, = - M, Asin(wt)
mey + Cdy + -F’mag - mé‘z

‘/p
2R

(82)

c,V,+ —0:=0

P
in which F,,,, is the nonlinear magnetic force between the moving magnet and the fixed magnet.
It is dependent upon the displacement y of the moving magnet and the structural parameters of

the electromagnetic part.



When it comes to connection topology 3, as shown in Fig. Slc, the external resistances R,

and R, are independent upon each other, and the lumped-parameter model is

M z:+C,:+Kz+0V,—F,,, =M., Asin(wt)

mey+ (Cd+oe)y+Fmar]:7mez (S3)

: V, .
c,V,+ RI —0z=0

2 r

It should be noted that, according to the classical electromagnetic theory, voltage across the

induction coil can be expressed as (Nguyen et al., 2020.)

R.ND*V,. 5 1 1
‘/e - h R + R . . 3 - 3 |- (S4)
ot Bt B\ (i — 29024+ D2)* ((heou+29) 2+ D?)?

Here, N, D, h.;, and R. are the number of turns, diameter, thickness and internal resistance
of the induction coil, respectively.

As shown in Fig. S1d, the connection topology 4 takes into account the electrically serial
connection between the piezoelectric part and electromagnetic part. Considering an external load
resistance of Ry,.., the following lumped-parameter model is formulated:

M 24 C, 2+ Kz+ 0V, —F,,,=— M Asin (wt)
m.g+ (Cy + Cy+ Fuy=—-m. 2
i=2(0:—0C,V) s5)

di
L, &

Ve + Vp - iRloud

Vo.=0oy—iR.—

where 7 denotes the current flowing through the external resistance R.., and o is the
electromechanical coupling coefficient for the electromagnetic part. Further, L. can be obtained

using the Wheeler formula (Wheeler et al., 1928)

_ 7.875x10°D.N?
‘ 3D, +9h,,+5(D—d,)

coil

(S6)

where D =(D+d,)/2 isthe average diameter of the coil.

S1.1 Magnetic force and the electromagnetic damping

To explicitly describe the magnetic force Fmag in the system, schematic diagram of
electromagnetic part is shown in Fig. S2 (a) with dimensions explicitly designated. According to

the Taylor expansion approximation by Nguyen et al., 2020 the magnetic force F),,, is expressed



with respect to the displacement y of the moving magnet as
Fmay - (kly + k3y3) (S7)
where k;and k; are the linear and nonlinear coefficients of magnetic force respectively, and their

expressions are as follows:

e 12$f7‘,.’):£m1/m r2(h 7 H) + T2(h + H)
1= 5 >
Ho (r*+ (—H)*)* >+ (h+H)?)?®

(S8)

_RG—H) R+ H) }
(R*+ (h—H)?)®  (R*+ (h+H)?)"

L _ 108,38V, {R2(h+H) (BR>—4(h+H)?) R>(h—H) (3R>—4(h— H)?)
3 -

Ho (R*+ (h+ H)?)* (R*+ (h—H)?)* )
(= H) 3 —4(h—H)?) (bt H) (3r24(h+H)2)}
(r*+ (h—H)?)? (r?+ (h+H)?)*

where 3B, is the residual magnetic flux densities of the upper and lower fixed magnets, ~» and
H are the height and the distance between the upper and lower fixed magnets respectively. B,,
and V,,are the residual magnetic flux density and volume of the moving magnet, respectively.
And V,, =wh,, (R*—1r?)/4, where R and rare the outer diameter and inner diameter of the
ring magnet respectively. p,=4nx 107" H/m is the magnetic permeability of a vacuum.

A series of computational analyses are also done to investigate the variation of magnetic
forces, as shown in Fig. S2 (b). The computationally obtained relations between magnetic force
F,., and relative displacement y of the moving magnet is compared with the analytical
formulations used above and plotted in Fig. S2 (¢). It can be concluded that for a small relative
displacement y <10 mm, the analytical formulations show high accuracy of approximation.

Next, the influence of the distance H between the upper and lower fixed magnets upon
magnetic force F,,, is computationally analyzed and the results are shown in Fig. S2 (d). It can
be found that with the increase of H, the nonlinear dependence of F,,, upon y becomes
weaker in the considered range y < 30 mm. That is to say, F,. tends to be approximately

proportional to y.
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Fig. S2 Magnetic forces between the magnets: (a) schematic diagram of the
electromagnetic part, (b) results from finite element simulation, (c) magnetic force obtained
by finite element simulation compared with those obtained by Eq. (S7); (d) influence of the
distance H on the dependence of F,,, overy according to Eq. (S7)

When electromagnetic part of the HEHPE is connected to a resistance load, a closed loop is
formed. There will be current induced in the coil and then the moving magnet is subject to another

force, called the electromagnetic damping force F,. The force Fe is principally proportional to the
relative velocity y of the moving magnet by F,=C.y . The coefficient C., or the
electromagnetic damping, is expressed by (Nguyen et al., 2020.)

o _ D'BLVIN? 1 B 1
P BARND - Gt 29))’ (D (. —20)*)°

(S10)

An example dependence curve of the electromagnetic damping C. upon the relative
displacement y of the moving magnet obtained from Eq. (S10) is shown in Fig. S3 a. It is seen
that the initial zero-displacement point is a local minimum for the value of C.. Meanwhile, two
local maximum peaks are present when the moving magnet is totally outside the scope of the
induction coil. To simplify the model, the maximum value of C.,, or C,,, is used exclusively to
represent the electromagnetic damping in our derived model. With the number of turns NV of the

induction coil unchanged, thickness h.,; and outer diameter D of the induction coil vary



between 10 mm and 30 mm, respectively. The obtained values of C. are shown with respect to

relative displacement y of the moving magnet in Figs. S3c and S3d, respectively. The resulting

values of (., are shown in terms of the values of h.,; and D in Fig. S3b. Third-order

polynomials are used to fit the relations with the detailed fitting expressions

y=-5.6x10"°h2, +5.6057x10"h2,;-0.0204h,,; + 0.2881 (S11)

y=-3.9267x10°D*+40.0029D*-0.0752D —0.6772. (S12)
The fitted relations are also plotted in Fig. S3b and compared with analytical results from Eq.
(S10). Good agreement is found. What’s more, it can be concluded that in the considered

parameter ranges, h.; shows a larger effect upon C., than D. As it indicates, to achieve

smaller electromagnetic damping, thinner induction coil is preferred.
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Fig. S3 (a) Electromagnetic damping C. as a function of relative displacement y of the
moving magnet; (b) Influence of h.,; and D upon C., and the corresponding fitted
approximations; (¢) C. as a function of y influenced by h..; (d) C. as a function of y

influenced by D

S1.2 Dimensionless analysis

For the convenience of analysis, the following dimensionless scheme is used:



_ _ 6h = 1
z=hz, y=hy, V”:FPV”’ t:wnT (S13)

Where z, y, V,, and 7 are dimensionless piezoelectric deflection, dimensionless

displacement of the moving magnet, dimensionless voltage, and dimensionless time, respectively.

h is the length scale, which is taken as the thickness of the fixed ring magnet. w, 1is the natural

frequency, which is taken as the first-order natural frequency of the piezoelectric cantilever beam.

6 is the electromechanical coupling coefficient of the piezoelectric part of the HEHPE. C, is the

equivalent capacitance of piezoelectric ceramic plates.

Using the above dimensionless scheme (S13), governing equations of the studied HEHPE in

connection topology 1 is reformulated into:

54265474 sV, = 2 0sin(2r)
m CI, w3 P h T
., (S14)
Vp + mvp —2z=0
. . C, w
Where damping ratio &, = S and 2= —.
The equations for connection topology 2 is then changed into:
- EE 0° = ky ks 5 A _ .
z+2¢, 72+ 72+ Cow? V, m— VT ma? V=, 2sin (27)
i C€ kl — kg -3 _ =
v mow,y MW oz T (815)
V4=t V,—5=0
TR, Cow, T 7T
The equations for connection topology 3 is converted into the form
A i — 92 7 kl —_ kg —3 _ A .
z+2¢,7+72+ C w? v, — Y w0 v'i=7 sin (271)
= Cc + Crm kl — ki} —3_ =
ey ma ! w7 (516)
V4otV —3=0
" 2R, Cow, " =
The equations for connection topology 4 leads to
- R 02 — ko ks s A
z2+26,2+2+ Cow? v, M., Y M0 v=7 N2sin (£27)
= C.+C, ko — ks g =
v mow, Y t ooV T ¥ =7 (S17)
Li(Rlond+Rc)(éié> 1 i g - =
Yy Luw, " V)T cw T one =0



S2  Analysis of the input and output signals
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Fig. S4 Time-history voltage output of the HEHPE at different frequencies in connection
topology 3: (a) the piezoelectric part and (b) the electromagnetic part. Voltage output of the
acceleration sensor attached to the base of the HEHPE: (a) time-history signals and

frequency spectrum

With connection topology 3, the HEHPE is excited with a base acceleration signal of an
amplitude of 0.2 g. The load resistance  connected to the piezoelectric part is set to be 70 kQ,
the load resistance Re connected to the electromagnetic part is set to be 150 Q. Example time
history of the voltage outputs of the piezoelectric part and the electromagnetic part in the studied
HEHPE at different excitation frequencies are shown in Fig. S4 (a) and (b), respectively.

It is seen from Fig. S4 (a) that at the base excitation frequency of 9 Hz and 9.6 Hz, output
voltage of the piezoelectric part assumes a good sinusoidal waveform, while at base excitation
frequency of 6 Hz, the voltage output waveform is of multifrequency components. For the
electromagnetic part, however, the output voltage waveform is not purely sinusoidal in the

considered frequency range, as shown in Fig. S4 (a). This leads us to double check the output



acceleration of the vibration exciter. To this end, input signal to the vibration exciter is set to be of
sinusoidal waveform at the frequency of 6 Hz, output vibration acceleration of the base is then
recorded using an acceleration sensor and plotted in Fig. S4 (c¢) with corresponding frequency
spectrum shown in Fig. S4 (d). It is obviously shown that though of relatively small amplitude, the
output signal of the vibration exciter is not of single frequency component. The higher frequency
components of the excited acceleration signal can not be neglected. In fact, the output vibration
signals contain frequency components of 5.968 Hz and 11.94 Hz together. Note that these values
do not strictly correspond to the frequency 6 Hz given by the signal generator. This may be caused
by system error and can be ignored in our situation.

Therefore, both the input and output of the studied HEHPE contain multifrequency
components. This feature brings into question the usual method of characterization of the output
performance of the studied HEHPE. In fact, it is currently widely adopted that the output
performance of an energy harvester, say, amplitude of output voltage, is plotted against base
excitation frequency, whose trend is checked to extract the resonant frequency and maximized
output voltage. Two points are to be concerned. Firstly, due to the multi-frequency nature, the
“amplitude” measuring the difference between the maximum value and minimum value of the
output signal is not an appropriate indicator. Secondly, in the frequency amplitude plot, each point
should corresponding to a single frequency component. Therefore, in the treatment of
experimental results, we have to take care of the frequency components of the output signal before
resorting to any data processing and performance evaluation.

With an acceleration amplitude of 0.2 g, a base excitation of 6.4 Hz is applied to the HEHPE
in connection topology 3. The resulting time-history output voltage from the piezoelectric part is
shown in Fig. S5 (a). Obviously, the signal contains high frequency noise, which can be filtered
and leads to the signal shown in Fig. S5 (b) with blue hollow circles. Frequency spectrum of the
filtered signal is shown in Fig. S5 (c¢), from which we can easily identified many higher-order

harmonics, though the calculated base frequency is around 6.452 Hz, instead of exactly 6.4 Hz.
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Fig. S5 Output voltage of the piezoelectric part in connection topology 3 under the
excitation frequency of 6.4 Hz: (a) time-history voltage, (b) filtered and fitted voltages, and (c)
frequency spectrum of filtered voltages

From Fig. S5 (c), it is known that harmonics higher than third-order are of relatively small
amplitude. Thus, we use the following fitting equations based on Fourier series to approximate the

time-history signal

Fru= Ay + Aisin @Qrft + &) + Aosin(nfit + ¢5) + Agsin (6nht +¢5) +...  O18)
where A;and ¢, represent the magnitude and phase angle of given harmonics, respectively, f;
denotes the base frequency, ¢ =1,2,3, - -.

Setting the base frequency = 6.4 Hz, the fitted results are shown in Fig. S5 (b) with red solid
lines. According to the calculations, amplitude of the first-order harmonic is 6.407 V, while
amplitudes of the second-order and third-order harmonics are, 3.436 V and 1.555 'V, respectively.
These results do not coincide with the signal spectrum shown in Fig. S5 (c). Therefore, it is
recommended that Fourier series fitting instead of direct Fourier transform should be used to
extract the frequency components in a given signal in our situation.

The same procedures are applied to the analysis of acceleration signal provided by the
vibration exciter. The results are shown in Fig. S6. Similarly, the base excitation frequency is set
to be 6.4 Hz. Note that the signal considered here is relatively pure sinusoidal and does not need
filtering. Since the sensitivity of acceleration sensor is 100.08 mV/g, the time domain signal
shown in Fig. S6 (a) implies a voltage amplitude of around 0.02 V, and the corresponding
acceleration is around 0.2 g. Amplitudes for the first three harmonics are 0.01975 V, 0.004246 V,

and 0.000692 V, respectively.
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Fig. S6 Output voltage of the acceleration sensor attached to the base of the HEHPE at the
base excitation frequency of 6.4 Hz: (a) original and fitted time-history voltages, and (b)

frequency spectrum of the voltage signal
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Fig. S7 (a) Frequency response of the HEHPE with connection topology 1; (b) Frequency
response of the HEHPE with connection topology 2; Frequency responses of the piezoelectric
part (c) and the electromagnetic part (d) for connection topology 3; (e) Frequency response
of the HEHPE with connection topology 4. The “base frequency” and “double frequency”
here corresponds to the first-order and second-order harmonics obtained in (18),
respectively

With the above described procedures for the input and output signals of the studied HEHPE,
the remaining question is how to measure the performance of HEHPE. Due to the nonlinearity in
HEHPE, multi-frequency input and output signals are commonly obtained in the experiments. A
quasi-linear process is established. We extract the first two harmonics shown in the Fourier series

fitting of given signals. After that, for a given set of experimentally obtained input and output



signals, we correspond the amplitudes of the same order of harmonics in the fitted input and
output signals. They ratios between the output and input amplitudes are then plotted against
frequency of the underlying harmonics, as shown in Fig. S7. The results in terms of four
connection topologies are simultaneously shown. As a comparison, the results which contain only
the first harmonic are also shown.

It is clearly shown in Fig. S7 that in the low frequency range (f smaller than 12 Hz or so),
the curve for the second harmonic coincides with that for the first-order harmonics. In the
meantime, for the relatively high frequency range (f greater than 12 Hz or so), the two curves
deviate from each other. This phenomenon partly validate our assumption of quasi-linearity. Also,
it indicates that nonlinearity in the system begins to come into play when base excitation
frequency surpasses a certain limit. From a practical perspective of view, extraction of

higher-order harmonics is useful in the investigation of dynamical behavior of the system.
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