Supplementary Materials

Menaquinone-7 production from maize meal hydrolysate by *Bacillus* isolates with diphenylamine and analogue resistance

Jian-zhong XU, Wei-guo ZHANG

(The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China) E-mail: xujz126@126.com; zwgjnedu@sina.cn

Fig. S1 Biosynthetic pathway of MK-7 and regulation mechanism by inhibition of aromatic amino acids and diphenylamine (Armougom *et al.*, 2009)

represents inhibition; DAHP: deoxy-D-arabinohepturosonate-7-phosphate; DHNA: 1,4-dihydroxyl-2-naphthoate; MK-7: menaquinone-7

Fig. S2 Mutation rate and lethality rate of *B. amyloliquefaciens* Y-2 by ARTP

Gray-colored-column represents the positive mutation rate; *White-colored-column* represents the negative mutation rate; *Fold-ing-line* represents the lethality rate. Positive mutation rate=(colonies with increased MK-7 production/total colonies grew in TYG-plates)×100%; Negative mutation rate=(colonies with decreased MK-7 production/total colonies grew in TYG-plates)×100%; Lethality rate=(colonies grew in TYG-plates before mutagenesis–colonies grew in TYG-plates after mutagenesis)/total colonies grew in TYG-plates before mutagenesis×100%. Each value represents mean with standard error of three replicative experiments. The standard errors are shown as bars.

Fig. S3 Cell growth, MK-7 production, and sugar utilization of the mutant *B. amyloliquefaciens* H.β.D.R.-5 after several generations

White-colored-column represents OD_{600} ; *Gray-colored-column* represents the concentration of MK-7; *Filled-triangle* represents the residual sugar concentration. Each value represents mean with standard error of three replicative experiments. The standard errors are shown as bars.

Reference

Armougom, F., Bittar, F., Stremler, N., et al., 2009. Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing. Eur. J. Clin. Microbiol. Infect. Dis., 28(9):1151-1154. http://dx.doi.org/10.1007/s10096-009-0749-x